[1]徐伟铭,董聪.混合锂离子超级电容器电化学与热特性研究[J].浙江科技学院学报,2024,(03):195-204.[doi:10.3969/j.issn.1671-8798.2024.03.002 ]
 XU Weiming,DONG Cong.Study on electrochemical and thermal characteristics of hybrid lithium ion supercapacitor[J].,2024,(03):195-204.[doi:10.3969/j.issn.1671-8798.2024.03.002 ]
点击复制

混合锂离子超级电容器电化学与热特性研究(/HTML)
分享到:

《浙江科技学院学报》[ISSN:1001-3733/CN:61-1062/R]

卷:
期数:
2024年03期
页码:
195-204
栏目:
出版日期:
2024-06-28

文章信息/Info

Title:
Study on electrochemical and thermal characteristics of hybrid lithium ion supercapacitor
文章编号:
1671-8798(2024)03-0195-10
作者:
徐伟铭董聪
(浙江科技大学 机械与能源工程学院,杭州 310023)
Author(s):
XU Weiming DONG Cong
(School of Mechanical and Energy Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China)
关键词:
混合锂离子超级电容器 数值模拟 电化学与热特性 粒径 核壳模型
分类号:
TM53
DOI:
10.3969/j.issn.1671-8798.2024.03.002
文献标志码:
A
摘要:
【目的】为研究混合锂离子超级电容器(hybrid lithium ion supercapacitor,HLIC)的性能,分析多种干扰因素对其电化学与热特性的影响。【方法】首先建立HLIC电化学热耦合模型; 其次通过试验与数值模拟相互验证来证明模型的可靠性; 最后分析阳极活性材料颗粒粒径、充放电倍率、电芯结构状态对HLIC的电化学与热特性的影响,并通过建立核壳模型绘制核壳图,从微观的角度分析了阳极活性材料颗粒粒径对HLIC电化学性能的影响过程。【结果】HLIC在高倍率的条件下,减小粒径可使阳极活性材料颗粒锂化程度显著提高,10 C倍率下粒径15.5 μm与0.5 μm的单体相比,前者能量密度降低了63.14%,平均发热率增加了121.66%,最大温度上升了17.7 K; 而在低倍率的条件下,粒径对HLIC的性能影响不大,无须增加成本过分减小粒径,并且电芯在层压方向导热性较差,需要在层压方向上增加散热以保证其工作性能良好。【结论】本研究对各个场景所需的HLIC性能参数的选取具有一定的参考意义。

参考文献/References:

[1] WANG Y, GUO C H, CHEN X J, et al. Carbon peak and carbon neutrality in China:goals, implementation path and prospects[J]. China Geology,2021,4(4):720.
[2] XU G Y, DONG H Y, XU Z C, et al. China can reach carbon neutrality before 2050 by improving economic development quality[J]. Energy, 2022, 243:123087.
[3] ZHENG W K, LI Z Y, HAN G, et al. Nitrogen-doped activated porous carbon for 4.5 V lithium-ion capacitor with high energy and power density[J]. Journal of Energy Storage,2022,47:103675.
[4] 宋元明,刘亚杰,金光,等.锂离子电池/超级电容器混合储能系统能量管理方法综述[J].储能科学与技术,2023:13(2):652.
[5] 杨续来,张峥,曹勇,等.高能量密度锂离子电池结构工程化技术探讨[J].储能科学与技术,2020,9(4):1127.
[6] VENUGOPAL N. Silicon/spent coffee waste-derived carbon composite as an efficient anode for li-ion batteries[J]. International Journal of Electrochemical Science,2021,16(8):210836.
[7] XIONG R Y, ZHANG T F, HUANG T L, et al. Improvement of electrochemical homogeneity for lithium-ion batteries enabled by a conjoined-electrode structure[J]. Applied Energy,2020,270:115109.
[8] 闵凡奇,吕桃林,付诗意,等.锂离子电容器的热特性及热模型[J].储能科学与技术,2022,11(8):2629.
[9] BAYATINEJAD M A, MOHAMMADI A. Investigating the effects of tabs geometry and current collectors thickness of lithium-ion battery with electrochemical-thermal simulation[J]. Journal of Energy Storage,2021,43:103203.
[10] YUAN Q Q, XU X M, ZHU L, et al. Effects of local thermal accumulation conditions on the thermal characteristics of lithium-ion batteries under high-rate charging[J]. Journal of Energy Engineering,2020,146(6):4020072.
[11] ZHOU W, LIU Z E, CHEN W, et al. Thermal characteristics of pouch lithium-ion battery capacitors based on activated carbon and LiNi1/3Co1/3Mn1/3O2[J]. Journal of Energy Storage,2023,66:107474.
[12] 王赫,秦楠,郭鑫,等.锂离子电容器硬碳负极材料的表面改性及其电化学性能研究[J].化工学报,2020,71(6):2735.
[13] 上官玉金,谢长君,刘芙蓉,等.锂电池与超级电容混合储能系统拓扑结构优化[J].电源技术,2022,46(1):83.
[14] ZHANG G X, WEI X Z, CHEN S Q, et al. Research on the impact of high-temperature aging on the thermal safety of lithium-ion batteries[J]. Journal of Energy Chemistry,2023,87:378.
[15] HE T F, ZHANG T, WANG Z R, et al. A comprehensive numerical study on electrochemical-thermal models of a cylindrical lithium-ion battery during discharge process[J]. Applied Energy,2022,313:118797.
[16] 李向东,廉睿,吴佳美,等.基于Fluent的超级电容器模组充放电循环的热仿真分析[J].储能科学与技术,2021,10(2):732.
[17] 张兴磊,王文,华黎,等.恒流充放电过程中双电层电容器温度特性[J].化工学报,2016,67(4):1207.
[18] CHEN Z J, QIN Y Z, DONG Z Z, et al. Numerical study on the heat generation andthermal control of lithium-ion battery[J]. Applied Thermal Engineering,2023,221:119852.
[19] NEWMAN J, TIEDEMANN W. Porous-electrode theory with battery applications[J]. AICHE Journal,1975,21(1):25.
[20] DU S L, LAI Y Q, AI L, et al. An investigation of irreversible heat generation in lithium ion batteries based on a thermo-electrochemical coupling method[J]. Applied Thermal Engineering,2017,121:501.
[21] 许于,陈怡沁,周静红,等.LiFePO4锂离子电池的数值模拟:正极材料颗粒粒径的影响[J].化工学报,2020,71(2):821.
[22] BÖCKENFELD N, KÜHNEL R S, PASSERINI S, et al. Composite LiFePO4/AC high rate performance electrodes for li-ion capacitors[J]. Journal of Power Sources,2011,196(8):4136.
[23] AN Z J, JIA L, WEI L T, et al. Investigation on lithium-ion battery electrochemical and thermal characteristic based on electrochemical-thermal coupled model[J]. Applied Thermal Engineering,2018,137:792.
[24] ZHOU W, LIU Z E, AN Y B, et al. Thermal behavior analysis of lithium-ion capacitors at transient high discharge rates[J]. Journal of Energy Storage,2022,53:105208.

备注/Memo

备注/Memo:
收稿日期:2024-01-15
基金项目:浙江省自然科学基金项目(LY23E060001); 宁波市科技计划项目(2019B10045)
通信作者:董 聪(1982— ),男,浙江省温州人,副教授,博士,主要从事超级电容热管理和热工设备强化传热研究。E-mail:lanyuanshishe@163.com。
更新日期/Last Update: 2024-06-28