参考文献/References:
[1] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(6):640.
[2] RONNEBERGER O, FISCHER P, BROX T. U-Net:convolutional networks for biomedical image segmentation[C]//Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham:Springer,2015:234.
[3] LI G, YUNI, KIM J, et al. DABNet:depth-wise asymmetric bottleneck for real-time semantic segmentation[C]//Proceedings of the British Machine Vision Conference. Cardiff:University of Cardiff,2019:11357.
[4] HOU Q B, ZHANG L, CHENG M M, et al. Strip pooling:rethinking spatial pooling for scene parsing[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Seattle:IEEE/CVF,2020:4003.
[5] WU Y, HUANG Z M, LONG H Y, et al. A semantic segmentation network simulating the ventral and dorsal pathways of the verebralvisual cortex[J].IEEE Access,2021,9:47230.
[6] LEE S, PARK S J, HONG K S. RDFNet:RGB-dmulti-level residual feature fusion for indoor semantic segmentation[C]//Proceedings of the International Conference on Computer Vision. Venice:IEEE,2017:4980.
[7] WANG W Y, NEUMANN U. Depth-aware CNN for RGB-D segmentation[C]//Proceedings of the European Conference on Computer Vision. Munich:Springer,2018:135.
[8] HU X X, YANG K L, FEI L, et al. ACNet:attention based network to exploit complementary features for RGB-D semantic segmentation[C]//Proceedings of the International Conference on Image Processing. Taipei:IEEE,2019:1440.
[9] CHEN X K, LIN K Y, WANG J B, et al. Bi-directional cross-modality feature propagation with separation-and-aggregation gate for RGB-d semantic segmentation[C]//Proceedings of the European Conference on Computer Vision. Glasgow:Springer,2020:561.
[10] ZHOU W J, YUAN J Z, LEI J S, et al. TSNet:three-stream self-attention network for RGB-D indoor semantic segmentation[J].Intelligent Systems,2021,36(4):73.
[11] LIN D, ZHANG R M, JI Y F, et al. SCN:switchable context network for semantic segmentation of RGB-D images[J].IEEE Transactions on Cybernetics,2020,50(3):1120.
[12] YUE Y C, ZHOU W J, LEI J S, et al. Two-stage cascaded decoder for semantic segmentation of RGB-D images[J].IEEE Signal Processing Letters,2021,28:1115.
[13] SUN L, YANG K L, HU X X, et al. Real-time fusion network for RGB-D semantic segmentation incorporating unexpected obstacle detection for road-driving images[J].IEEE Robotics and Automation Letters,2020,5(4):5558.
[14] 杜敏敏,司马海峰.改进DeepLabv3+的道路图像语义分割网络[J].中国科技信息,2022(15):105.
[15] WANG H L, FAN R, SUN Y X, et al. Dynamic fusion module evolves drivable area and road anomaly detection:a benchmark and algorithms[J].IEEE Transactions on Cybernetics,2022,52(10); 10750.
[16] SUN Y X, ZUO W X, LIU M. RTFNet:RGB-thermal fusion network for semantic segmentation of urban scenes[J].IEEE Robotics and Automation Letters,2019,4(3):2576.
[17] ZHOU H, QI L, HUANG H, et al. CANet:co-attention network for RGB-D semantic segmentation[J].Pattern Recognition,2022,124:108468.
[18] ZHOU W J, YANG E Q, LEI J S, et al. FRNet:feature reconstruction network for RGB-D indoor scene parsing[J].IEEE Journal of Selected Topics in Signal Processing,2022,16(4):677.