[1]刘金瑞,郑涛涛,肖燕梅.齐型空间上加权Besov空间与Triebel-Lizorkin空间的Tb定理[J].浙江科技学院学报,2024,(01):1-12.[doi:10.3969/j.issn.1671-8798.2024.01.001]
 LIU Jinrui,ZHENG Taotao,XIAO Yanmei.Tb theorem for weighted Besov spaces and Triebel-Lizorkin spaces on homogeneous spaces[J].,2024,(01):1-12.[doi:10.3969/j.issn.1671-8798.2024.01.001]
点击复制

齐型空间上加权Besov空间与Triebel-Lizorkin空间的Tb定理(/HTML)
分享到:

《浙江科技学院学报》[ISSN:2097-5236/CN:33-1431/Z]

卷:
期数:
2024年01期
页码:
1-12
栏目:
出版日期:
2024-02-29

文章信息/Info

Title:
Tb theorem for weighted Besov spaces and Triebel-Lizorkin spaces on homogeneous spaces
文章编号:
1671-8798(2024)01-0001-12
作者:
刘金瑞郑涛涛肖燕梅
(浙江科技大学 理学院,杭州 310023)
Author(s):
LIU Jinrui ZHENG Taotao XIAO Yanmei
(School of Science, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China)
关键词:
加权Besov空间 加权Triebel-Lizorkin空间 Plancherel-P?lya特征刻画 仿增长函数 Tb定理
分类号:
O174.2
DOI:
10.3969/j.issn.1671-8798.2024.01.001
文献标志码:
A
摘要:
【目的】齐型空间自然地包含了欧氏空间Rn、光滑紧Riemann流形及Lipschitz区域的边界等,拟在齐型空间上建立奇异积分算子在加权Besov空间与Triebel-Lizorkin空间上有界的Tb定理。【方法】通过离散Calderón再生公式和几乎正交估计建立加权Besov空间与加权Triebel-Lizorkin空间的Plancherel-P?lya特征刻画,以保证函数空间的范数独立于恒等逼近的选取。【结果】获得了齐型空间上Calderón-Zygmund奇异积分算子在加权Besov空间及Triebel-Lizorkin空间上有界的充分条件。【结论】将欧氏空间上的Calderón-Zygmund奇异积分理论延拓到更广的齐型空间上,为奇异积分算子在函数空间上有界提供了判定方法。

参考文献/References:

[1] HAN Y S,SAWYER E T. Littlewood-Paley theory on the spaces of homogenous type and classical function spaces[J].Memoirs of the American Mathematical Society,1994,530:1.
[2] DAVID G,JOURN? J L,SEMMES S.Opérateues de Calderón-Zygmund,fonctions para-accrétives et interpolation[J].Revista Matemática Iberoamericana,1985,1(4):1.
[3] DAVID G,JOURN? J L. A boundedness criterion for generalized Calderón-Zygmund operators[J].Annals of Mathematics, 1984,120(2):371.
[4] HAN Y S.Calderón-type reproducing formula and the Tb theorem[J].Revista Matemática Iberoamericana,1994,10(1):51.
[5] MEYER Y,COIFMAN R R.Wavelets:Calderón-Zygmund and multilinear operators[M].Cambridge:Cambridge University Prsity Press, 1997.
[6] DENG D G,YANG D C. Some new Besov and Triebel-Lizorkin spaces associated with para-accretive functions on spaces of homogeneous type[J]. Journal of the Australian Mathematical Society,2006,80(2):229.
[7] LU G Z,ZHU Y P. Singular integrals and weighted Triebel-Lizorkin and Besov spaces of arbitrary number of parameters[J].Acta Mathematica Sinica(English Series),2013,29(1):39.
[8] 廖芳辉. Besov和Triebel-Lizorkin空间的若干问题[D].北京:中国矿业大学(北京),2015.
[9] MAC?AS R A,SEGOVIA C.Lipschitz functions on spaces of homogenous type[J].Advances in Mathematics,1979,33(3):257.
[10] WU X F,LIU Z G,ZHANG L J.Weighted Hardy spaces onspaces of homogeneous type with applications[J].Taiwanese Journal of Mathematics,2014,18(2):563.
[11] YANG D C. Some new Triebel-Lizorkin spaces on spaces of homogeneous type and their frame characterizations[J].Science in China(Series A:Mathematics),2005,48(1):13.
[12] LI J. Atomic decomposition of weighted Triebel-Lizorkin spaces on spaces of homogeneous type[J].Journal of the Australian Mathematical Society,2010,89(2):257.
[13] HAN Y C.Tb theorems for Triebel-Lizorkin spaces over special spaces of homogeneous type and their applications[J].Collectanea Mathematica,2008,59(1):65.
[14] 郑涛涛,来越富.非齐性空间上的双线性广义分数次积分算子[J].浙江科技学院学报,2018,30(3):181.
[15] HAN Y S,LEE M Y,LIN C C. Hardy spaces and the Tb theorem[J].Journal of Geometric Analysis,2004,14(2):294.
[16] 邓东皋,韩永生. Besov与Triebel-Lizorkin空间的T1定理[J].中国科学(A辑:数学),2004,34(6):658.
[17] CHRIST M. A T(b)theorem with remarks on analytic and the Cauchy integral[J].Colloquium Mathematicum, 1990,25(4):601.
[18] FRAZIER M,JAWERTH B. A discrete transform and decompositions of distribution spaces[J].Journal of Functional Analysis, 1990,93(1):34.

备注/Memo

备注/Memo:
收稿日期:2023-06-18
基金项目:国家自然科学基金项目(11626213); 浙江省自然科学基金项目(LQ17A010002)
通信作者:郑涛涛(1984— ),男,江西省上饶人,副教授,博士,主要从事调和分析及统计分析研究。E-mail:zhengtao@zust.edu.cn。
更新日期/Last Update: 2024-02-29