Unit: | Unit: (School of Science, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China) |
---|
摘要: | 摘要: 【目的】齐型空间自然地包含了欧氏空间Rn、光滑紧Riemann流形及Lipschitz区域的边界等,拟在齐型空间上建立奇异积分算子在加权Besov空间与Triebel-Lizorkin空间上有界的Tb定理。【方法】通过离散Calderón再生公式和几乎正交估计建立加权Besov空间与加权Triebel-Lizorkin空间的Plancherel-P?lya特征刻画,以保证函数空间的范数独立于恒等逼近的选取。【结果】获得了齐型空间上Calderón-Zygmund奇异积分算子在加权Besov空间及Triebel-Lizorkin空间上有界的充分条件。【结论】将欧氏空间上的Calderón-Zygmund奇异积分理论延拓到更广的齐型空间上,为奇异积分算子在函数空间上有界提供了判定方法。 |
---|
参考文献 /References:
| 参考文献 /References: [1] HAN Y S,SAWYER E T. Littlewood-Paley theory on the spaces of homogenous type and classical function spaces[J].Memoirs of the American Mathematical Society,1994,530:1. [2] DAVID G,JOURN? J L,SEMMES S.Opérateues de Calderón-Zygmund,fonctions para-accrétives et interpolation[J].Revista Matemática Iberoamericana,1985,1(4):1. [3] DAVID G,JOURN? J L. A boundedness criterion for generalized Calderón-Zygmund operators[J].Annals of Mathematics, 1984,120(2):371. [4] HAN Y S.Calderón-type reproducing formula and the Tb theorem[J].Revista Matemática Iberoamericana,1994,10(1):51. [5] MEYER Y,COIFMAN R R.Wavelets:Calderón-Zygmund and multilinear operators[M].Cambridge:Cambridge University Prsity Press, 1997. [6] DENG D G,YANG D C. Some new Besov and Triebel-Lizorkin spaces associated with para-accretive functions on spaces of homogeneous type[J]. Journal of the Australian Mathematical Society,2006,80(2):229. [7] LU G Z,ZHU Y P. Singular integrals and weighted Triebel-Lizorkin and Besov spaces of arbitrary number of parameters[J].Acta Mathematica Sinica(English Series),2013,29(1):39. [8] 廖芳辉. Besov和Triebel-Lizorkin空间的若干问题[D].北京:中国矿业大学(北京),2015. [9] MAC?AS R A,SEGOVIA C.Lipschitz functions on spaces of homogenous type[J].Advances in Mathematics,1979,33(3):257. [10] WU X F,LIU Z G,ZHANG L J.Weighted Hardy spaces onspaces of homogeneous type with applications[J].Taiwanese Journal of Mathematics,2014,18(2):563. [11] YANG D C. Some new Triebel-Lizorkin spaces on spaces of homogeneous type and their frame characterizations[J].Science in China(Series A:Mathematics),2005,48(1):13. [12] LI J. Atomic decomposition of weighted Triebel-Lizorkin spaces on spaces of homogeneous type[J].Journal of the Australian Mathematical Society,2010,89(2):257. [13] HAN Y C.Tb theorems for Triebel-Lizorkin spaces over special spaces of homogeneous type and their applications[J].Collectanea Mathematica,2008,59(1):65. [14] 郑涛涛,来越富.非齐性空间上的双线性广义分数次积分算子[J].浙江科技学院学报,2018,30(3):181. [15] HAN Y S,LEE M Y,LIN C C. Hardy spaces and the Tb theorem[J].Journal of Geometric Analysis,2004,14(2):294. [16] 邓东皋,韩永生. Besov与Triebel-Lizorkin空间的T1定理[J].中国科学(A辑:数学),2004,34(6):658. [17] CHRIST M. A T(b)theorem with remarks on analytic and the Cauchy integral[J].Colloquium Mathematicum, 1990,25(4):601. [18] FRAZIER M,JAWERTH B. A discrete transform and decompositions of distribution spaces[J].Journal of Functional Analysis, 1990,93(1):34.
|
---|
备注/Memo:
| 备注/Memo: 收稿日期:2023-06-18 基金项目:国家自然科学基金项目(11626213); 浙江省自然科学基金项目(LQ17A010002) 通信作者:郑涛涛(1984— ),男,江西省上饶人,副教授,博士,主要从事调和分析及统计分析研究。E-mail:zhengtao@zust.edu.cn。
|
---|