[1]刘鹏,李何鑫,董聪.多能联供协同干燥的压缩空气储能[J].浙江科技大学学报,2024,(01):29-39.[doi:10.3969/j.issn.1671-8798.2024.01.004 ]
 LIU Peng,LI Hexin,DONG Cong.On compressed air energy storage for synergistic drying of multiple energy supplies[J].,2024,(01):29-39.[doi:10.3969/j.issn.1671-8798.2024.01.004 ]
点击复制

多能联供协同干燥的压缩空气储能(/HTML)
分享到:

《浙江科技大学学报》[ISSN:2097-5236/CN:33-1431/Z]

卷:
期数:
2024年01期
页码:
29-39
栏目:
出版日期:
2024-02-29

文章信息/Info

Title:
On compressed air energy storage for synergistic drying of multiple energy supplies
文章编号:
1671-8798(2024)01-0029-11
作者:
刘鹏李何鑫董聪
(浙江科技大学 机械与能源工程学院,杭州 310023)
Author(s):
LIU Peng LI Hexin DONG Cong
(School of Mechanical and Energy Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China)
关键词:
压缩空气储能 冷热电联产特性 综合能效 木材干燥 经济性
分类号:
TK02
DOI:
10.3969/j.issn.1671-8798.2024.01.004
文献标志码:
A
摘要:
【目的】为探究压缩空气储能系统(compressed air energy storage system, CAES)在冷热电场景下的工程应用,提出了一种用于木材干燥的CAES。【方法】首先搭建了CAES及其数学模型; 其次分析了木材高温干燥和除湿干燥模式的能耗,通过模拟试验探究了CAES的冷热电联产特性; 最后将系统产出的冷热电能与两种干燥模式的能耗负荷匹配,并进行经济性分析。【结果】储能系统采用补能预热,水流量为1 kg/s时产生最大制冷量和级间热量; 当换热冷却水流量为3.3 kg/s时,木材干燥综合能效最高; 高温干燥方案投资静态回收期稍微低于除湿干燥方案。【结论】本研究结果为木材干燥企业的能源转型提供参考,同时为压缩空气储能系统的工程应用开辟了新方向。

参考文献/References:

[1] 周恒.大规模光伏发电对电力系统的影响[J].光源与照明,2023(6):130.
[2] 马艺玮,杨苹,郭红霞.风-光-沼可再生能源分布式发电系统电源规划[J].电网技术,2012,36(9):9.
[3] MADAENI S H, SIOSHANSI R, DENHOLM P. How thermal energy storage enhances the economic viability of concentrating solar power[J]. Proceedings of the IEEE,2011,100(2):335.
[4] 庞永超.先进绝热压缩空气储能系统热力性能研究[D].北京:华北电力大学,2017.
[5] GUO H, XU Y, CHEN H, et al. Thermodynamic characteristics of a novel supercritical compressed air energy storage system[J]. Energy Conversion and Management,2016,115:167.
[6] FU H, HE Q, SONG J, et al. Thermodynamic of a novel advanced adiabatic compressed air energy storage system with variable pressure ratio coupled organic rankine cycle[J]. Energy,2021,227:120411.
[7] GUO H, XU Y, ZHANG Y, et al. Off-design performance and an optimal operation strategy for the multistage compression process in adiabatic compressed air energy storage systems[J]. Applied Thermal Engineering,2019,149:262.
[8] CHEN L X, HU P, ZHAO P P, et al. A novel throttling strategy for adiabatic compressed air energy storage system based on an ejector[J]. Energy Conversion and Management,2018,158:50.
[9] ZHANG Y, YANG K, LI X, et al. The thermodynamic effect of air storage chamber model on advanced adiabatic compressed air energy storage system[J]. Renewable Energy,2013,57:469.
[10] DU R, HE Y, CHEN H, et al. Performance and economy of trigenerative adiabatic compressed air energy storage system based on multi-parameter analysis[J]. Energy,2022,238:121695.
[11] LI R, WANG H, ZHANG H. Dynamic simulation of a cooling, heating and power system based on adiabatic compressed air energy storage[J]. Renewable Energy,2019,138:326.
[12] HE Y, ZHOU S, XU Y, et al. The influence of charging process on trigenerative performance of compressed air energy storage system[J]. International Journal of Energy Research,2021,45(12):17133.
[13] HAN Z, SUN Y, LI P. Research on energy storage operation modes in a cooling, heating and power system based on advanced adiabatic compressed air energy storage[J]. Energy Conversion and Management,2020,208:112573.
[14] ZHANG X, ZHANG T, MA L, et al. Cogeneration compressed air energy storage system for industrial steam supply[J]. Energy Conversion and Management,2021,235:114000.
[15] DIB G, HABERSCHILL P, RULLIèRE R, et al. Modelling small-scale trigenerative advanced adiabatic compressed air energy storage for building application[J]. Energy,2021,237:121569.
[16] GIAMPAOLO T. Compressor handbook:principles and practice[M]. Aalborg:River Publishers,2023.
[17] 李杨,井新经,王宏武,等.基于效能-传热单元数的回转式空预器换热性能计算方法[J].热力发电,2019,48(1):73.
[18] HE Y, ZHOU S, XU Y, et al. The influence of charging process on trigenerative performance of compressed air energy storage system[J]. International Journal of Energy Research,2021,45(12):17133.
[19] MEI S, WANG J, TIAN F, et al. Design and engineering implementation of non-supplementary fired compressed air energy storage system:TICC-500[J]. Science China Technological Sciences,2015,58(4):600.
[20] 李生鹏.非补燃式压缩空气储能系统建模与仿真[D].北京:华北电力大学,2016.
[21] 程万里.木材高温高压蒸汽干燥工艺学原理[M].北京:科学出版社,2007.
[22] 沈玉林,王哲,平立娟.不同干燥方法对人工林樟子松木材干燥特性的影响[J].林业科学,2020,56(11):151.

备注/Memo

备注/Memo:
收稿日期:2023-09-21
基金项目:浙江省自然科学基金项目(LY23E060001)
通信作者:董 聪(1982— ),男,浙江省温州人,副教授,博士,主要从事储能、温差发电、强化传热研究。E-mail:lanyuanshishe@163.com。
更新日期/Last Update: 2024-02-29