[1]陈岁繁,王浈元,李其朋.基于改进蚁群优化算法的AGV路径规划[J].浙江科技大学学报,2024,(01):59-67.[doi:10.3969/j.issn.1671-8798.2024.01.007 ]
 CHEN Suifan,WANG Zhenyuan,LI Qipeng.AGV path planning based on improved ant colony optimization algorithm[J].,2024,(01):59-67.[doi:10.3969/j.issn.1671-8798.2024.01.007 ]
点击复制

基于改进蚁群优化算法的AGV路径规划(/HTML)
分享到:

《浙江科技大学学报》[ISSN:2097-5236/CN:33-1431/Z]

卷:
期数:
2024年01期
页码:
59-67
栏目:
出版日期:
2024-02-29

文章信息/Info

Title:
AGV path planning based on improved ant colony optimization algorithm
文章编号:
1671-8798(2024)01-0059-09
作者:
陈岁繁王浈元李其朋
(浙江科技大学 机械与能源工程学院,杭州 310023)
Author(s):
CHEN Suifan WANG Zhenyuan LI Qipeng
(School of Mechanical and Energy Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China)
关键词:
蚁群优化算法 搜索效率 信息素 死锁 移动机器人
分类号:
TP242
DOI:
10.3969/j.issn.1671-8798.2024.01.007
文献标志码:
A
摘要:
【目的】针对传统蚁群算法(ant colonyalgorithm,ACA)在移动机器人(automatic guided vehicle,AGV)路径规划中搜索效率低、寻找路径长、拐点个数多等问题,提出一种改进的蚁群优化算法(ant colony optimization,ACO)。【方法】首先,在蚁群算法中加入预估代价值策略来改进启发函数,增强目标点的引导作用,提升搜索效率; 然后,结合狼群算法(wolf pack algorithm,WPA)分配机制来更新信息素,解决路径规划时易陷入局部最优的问题; 接着加入拐点影响因子来降低路径拐点; 最后,采用动态避障策略来解决死锁问题。【结果】运用改进蚁群优化算法后,移动机器人路径规划时,最佳路径长度、迭代次数和拐点数等比传统算法分别降低9.7%、57.8%、65.0%。【结论】本研究结果能为移动机器人在复杂环境下的路径选择提供重要参考。

参考文献/References:

[1] 肖金壮,余雪乐,周刚.一种面向室内AGV路径规划的改进蚁群算法[J].仪器仪表学报,2022,43(3):277.
[2] 周敬东,高伟周,杨文广,等.基于改进蚁群算法的移动机器人路径规划[J].科学技术与工程,2022,22(28):12484.
[3] 唐旭辉,辛绍杰.改进蚁群算法的移动机器人路径规划[J].计算机工程与应用,2022,58(5):287.
[4] ZHONG X Y, TIAN J, HU H S, et al. Hybrid path planning based on safe A* algorithm and adaptive window approach for mobile robot in large-scale dynamic environment [J]. Journal of Intelligent & Robotic Systems,2020,99(1):65.
[5] GAO X,WU H X,ZHAI L,et al.A rapidly exploring random tree optimization algorithm for space robotic manipulators guided by obstacle avoidance independent potential field [J].International Journal of Advanced Robotic Systems,2018,15(3):1.
[6] 杨傅,刘树东,鲁维佳,等.改进遗传算法在机器人路径规划中的应用[J].现代制造工程,2022(6):9.
[7] 段倩倩,辛绍杰.基于改进混合粒子群算法的机器人轨迹规划[J].机床与液压,2022,50(17):50.
[8] YANG K,YOU X M,LIU S,et al.A novel ant colony optimization based on game for traveling salesman problem[J]. Applied Intelligence,2020,50(12):4529.
[9] 刘新宇,谭力铭,杨春曦.未知环境下的蚁群-聚类自适应动态路径规划[J].计算机科学与探索,2019,13(5):846.
[10] 宋宇,张浩,程超.基于改进蚁群算法的物流机器人路径规划[J].现代制造工程,2022(11):35.
[11] MASOUMI Z,VAN G J,SADEGHI N A,et al.An improved ant colony optimization-based algorithm for user-centric multi-objective path planning for ubiquitous environments [J].Geoearto International,2021,36(2):278.
[12] 高茂源,王好臣.基于改进蚁群算法的移动机器人路径规划[J].传感器与微系统,2021,40(6):142:144.
[13] 李顺东,游晓明,刘升.结合ABC算法动态分级的双蚁态蚁群算法[J].计算机工程与应用,2020,56(12):37.
[14] 王明辉.基于改进多步长蚁群算法的机器人路径规划[J].机床与液压,2022,50(15):43.
[15] 张天瑞,吴宝库,周福强.面向机器人全局路径规划的改进蚁群算法研究[J].计算机工程与应用,2022,58(1):282.
[16] CHEN Y Y, ZHOU X M. Path planning of robot based on improved ant colony algorithm in computer technology[J]. Journal of Physics Conference Series,2021,1744(4):1.
[17] 马向华,张谦.改进蚁群算法在机器人路径规划上的研究[J].计算机工程与应用,2021,57(5):210.
[18] 刘聪,费炜,胡胜.狼群算法的研究与应用综述[J].科学技术与工程,2020,20(9):3378.
[19] 倪郁东,费学芳,沈吟东,等.基于改进狼群算法的移动机器人路径规划[J].合肥工业大学学报(自然科学版),2019,42(10):1424.
[20] FU J, LV T, LI B, et al. Three-dimensional underwater path planning of submarine considering the real marine environment[J]. IEEE Access,2022,10:37016.

相似文献/References:

[1]肖志荣,张正唯.基于蚁群优化算法的MR阻尼器模型的参数识别[J].浙江科技大学学报,2018,(01):51.
 XIAO Zhirong,ZHANG Zhengwei.Parameter identification of MR damper model based on Ant colony optimization algorithm[J].,2018,(01):51.

备注/Memo

备注/Memo:
收稿日期:2023-09-13
基金项目:浙江省科技计划项目(2023C02008,2024C04037)
通信作者:李其朋(1977— ),男,山东省临邑人,教授,博士,主要从事电磁传感技术、液压阀控制研究。E-mail:liqipeng@zust.edu.cn。
更新日期/Last Update: 2024-02-29