参考文献/References:
[1] ROMERO C, VENTURA S. Educational data mining:a review of the state of the art[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C(Applications and Reviews),2010,40(6):601.
[2] 黎龙珍.基于决策树算法的在线学习成绩预测[J].信息技术与信息化,2021(1):130.
[3] 班文静,姜强,赵蔚.基于多算法融合的在线学习成绩精准预测研究[J].现代远距离教育,2022(3):37.
[4] ALSARIERA Y A, BAASHAR Y, ALKAWSI G, et al. Assessment and evaluation of different machine learning algorithms for predicting student performance[J]. Computational Intelligence and Neuroscience,2022,2022:1.
[5] SHAHIRI A M, HUSAIN W,RASHID N A. A review on predicting student's performance using data mining techniques[J]. Procedia Computer Science,2015,72:414.
[6] BINMAT U, BUNIYAMIN N, Arsad P M, et al. An overview of using academic analytics to predict and improve students' achievement:a proposed proactive intelligent intervention[C]// IEEE 5th Conference on Engineering Education.Selangor:IEEE,2013:126.
[7] 兰嘉枫.基于一卡通数据的大一新生成绩预测预警[D].武汉:华中师范大学,2022.
[8] 孙美娟,张俊,年梅.基于校园一卡通和成绩数据的学生画像研究[J].计算机时代,2023(8):20.
[9] 刘晓云,刘鸿雁,李劲松.基于多元线性回归的学生成绩预测研究[J].计算机技术与发展,2022,32(3):203.
[10] 林婷婷.基于BP神经网络算法的成绩预测模型研究[J].计算技术与自动化,2022,41(1):79.
[11] NASER S A, ZAQOUT I, GHOSH M A, et al. Predicting student performance using artificial neural network:in the faculty of engineering and information technology[J]. International Journal of Hybrid Information Technology,2015,8(2):221.
[12] 柯红香.最小支持度挖掘算法在高校学生成绩关联规则的应用[J].长江工程职业技术学院学报,2023,40(2):69.
[13] 袁明.改进FP-Growth算法在考证成绩分析中的应用[J].信息技术与信息化,2021(6):53.
[14] CZIBULA G, MIHAI A, CRIVEI L M. SPRAR:a novel relational association rule mining classification model applied for academic performance prediction[J]. Procedia Computer Science,2019,159:20.
[15] 何楚,宋健,卓桐.基于频繁模式谱聚类的课程关联分类模型和学生成绩预测算法研究[J].计算机应用研究,2015,32(10):2930.
[16] 陈波.职业院校在线开放课程运行效果聚类分析[J].中国成人教育,2019(4):48.
[17] KOHONEN T. The self-organizing map[J]. Proceedings of the IEEE,1990,78(9):1464.
[18] DELGADO S, MORÁN F, SAN JOSÉ J C, et al. Analysis of students' behavior through user clustering in online learning settings, based on self organizing maps neural networks[J]. IEEE Access,2021,9:132592.
[19] JIMÉNEZ R, GERVILLA E, SESÉ A, et al. Dimensionality reduction in data mining using artificial neural networks[J]. Methodology Europtan Journal of Research Methods for the Behavioral and Social Sciences,2009,5(1):26.
[20] 赵翠翠,尹春华.K-means和SOM在商品评论中的情感词聚类对比[J].北京信息科技大学学报(自然科学版),2020,35(1):23.
[21] AGRAWAL R, SRIKANT R. Fast algorithms for mining association rules[C]//International Conference on Very Large Data Bases. San Francisco:VLDB,1994:487.
[22] MEHTA M, AGRAWAL R, RISSANEN J. SLIQ:a fast scalable classifier for data mining[C]//International Conference on Extending Database Technology. Avignon:Springer Berlin Heidelberg,1996:18.
[23] MAYILVAGANAN M, KALPANADEVI D. Comparison of classification techniques for predicting the cognitive skill of students in education environment[C]//2014 IEEE International Conference on Computational Intelligence and Computing Research. Coimbatore:IEEE,2014:1.