参考文献/References:
[1] 刘晓龙,崔磊磊,李彬,等.碳中和目标下中国能源高质量发展路径研究[J].北京理工大学学报(社会科学版),2021,23(3):1.
[2] MAVI M S,BHULLAR R S,CHOUDHARY O P. Differential ability of pyrolysed biomass derived from diverse feedstocks in alleviating salinity stress[J]. Biomass Conversion and Biorefinery,2020,12:5230.
[3] 黄英双,曹辉.改进人工蜂群算法优化支持向量机及应用[J].计算机应用与软件,2021,38(2):258.
[4] 邓青,薛青,翟凯.基于CSAGA-LSSVM算法的坦克驾驶模拟训练数据分类挖掘[J].山东科技大学学报(自然科学版),2022,41(1):25.
[5] 王维高,魏云冰,滕旭东.基于VMD-SSA-LSSVM的短期风电预测[J].太阳能学报,2023,44(3):207.
[6] 文大鹏,梁西银,苏茂根,等.激光诱导击穿光谱技术结合PCA-PSO-SVM对矿石分类识别[J].激光与光电子学进展,2021,58(23):192.
[7] HUANG W,LIU H,ZHANG Y,et al. Railway dangerous goods transportation system risk identification:comparisons among SVM,PSO-SVM,GA-SVM and GS-SVM[J]. Applied Soft Computing,2021,109:107541.
[8] MIRJALILI S,MIRJALILI S M,LEWIS A. Grey wolf optimizer[J]. Advances in Engineering Software,2014,69:46.
[9] 刘萍,俞焕.一种改进的自适应遗传算法[J].舰船电子工程,2021,41(6):102.
[10] 薛文.一种改进惯性权重的粒子群优化算法[J].现代信息科技,2023,7(20):88.
[11] 马骏.基于灰狼优化算法的改进研究及其应用[D].杭州:杭州电子科技大学,2019.
[12] YANG W,XIA K,FAN S,et al. A multi-strategy whale optimization algorithm and its application[J]. Engineering Applications of Artificial Intelligence,2022,108:104558.
[13] 童林,官铮.改进鲸鱼优化支持向量机的交通流量模糊粒化预测[J].计算机应用,2021,41(10):2921.
[14] LIU Y,CAO Y,WANG L,et al. Prediction of the durability of high-performance concrete using an integrated RF-LSSVM model[J]. Construction and Building Materials,2022,356:129232.
[15] 廖庆陵,窦震海,孙锴,等.基于自适应粒子群算法优化支持向量机的负荷预测[J].现代电子技术,2022,45(3):126.
[16] 何小龙,张刚,陈跃华,等.融合Lévy飞行和精英反向学习的WOA-SVM多分类算法[J].计算机应用研究,2021,38(12):3641.
[17] 武泽权,牟永敏.一种改进的鲸鱼优化算法[J].计算机应用研究,2020,37(12):3620.
[18] 普运伟,姜萤,田春瑾,等.基于全连接神经网络的在线学习行为分类判别[J].现代电子技术,2023,46(17):90.