[1]唐慧莹,邸 元,吴玉树.压裂液黏度及注入速率对裂缝网络形态的影响[J].浙江科技学院学报,2017,(06):401-408.[doi:10.3969/j.issn.1671-8798.2017.06.001]
 TANG Huiying,DI Yuan,WU Yushu.The impact of fluid viscosity and injection rate on geometry of the fracture network[J].,2017,(06):401-408.[doi:10.3969/j.issn.1671-8798.2017.06.001]
点击复制

压裂液黏度及注入速率对裂缝网络形态的影响(/HTML)
分享到:

《浙江科技学院学报》[ISSN:1001-3733/CN:61-1062/R]

卷:
期数:
2017年06期
页码:
401-408
栏目:
出版日期:
2017-12-14

文章信息/Info

Title:
The impact of fluid viscosity and injection rate on geometry of the fracture network
文章编号:
1671-8798(2017)06-0401-08
作者:
唐慧莹邸 元吴玉树
1.西南石油大学 油气藏地质及开发工程国家重点实验室,成都 610500; 2.北京大学 工学院,北京 100871; 3.科罗拉多矿业学院 石油工程系,科罗拉多 戈尔登 80401
Author(s):
TANG Huiying DI Yuan WU Yushu
1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University,Chengdu 610500, Sichuan, China; 2. College of Engineering, Peking University, Beijing 100871, China; 3. Department of Petroleum Engineering, Colorado School of Mines, Golden 80401, Colorado, USA
关键词:
天然裂缝 压裂液黏度 注入速率 位移不连续方法
分类号:
TE357.12
DOI:
10.3969/j.issn.1671-8798.2017.06.001
文献标志码:
A
摘要:
根据现场监测与岩芯观察结果,天然裂缝对水力压裂效果影响显著,压裂后易形成复杂缝网。通过数值计算对裂缝性储层压裂效果进行预测,可以实现对压裂参数(如压裂液黏度、注入速率等)的优化。本研究采用位移不连续方法计算压裂裂缝与天然裂缝的法向与切向位移,裂缝内流动方程采用有限体积法计算。压裂裂缝的扩展基于F能量判据,天然裂缝根据受力状态的不同存在闭合、滑移及开启3种形式。通过将裂缝变形方程与流动方程耦合求解,可以获得压裂裂缝在天然裂缝网络中的生长情况。由于压裂施工参数可以进行人为调整,因此了解不同施工参数对压裂效果的影响至关重要。现场及室内试验结果表明,高速注入高黏度流体更容易获得较为集中的裂缝分布。对比不同压裂液黏度及注入速率条件下天然裂缝壁面次级裂隙的生长行为,结果表明,高黏度、高注入速率的压裂方式更有助于次级裂隙的生长,从而抑制流体沿大尺度天然裂缝的流动,使压裂后裂缝分布更为集中。同时,计算结果还表明,高黏度、高速率的压裂方式获得的裂缝开度较大,总长较短,接触天然裂缝面积较小; 低黏度、低速率注入的方式有助于激发天然裂缝网络,诱导天然裂缝发生明显的剪切滑移。

参考文献/References:

[1] BLANTON T. An experimental study of interaction between hydraulically induced and pre-existing fractures[C]//Proceedings of SPE Unconventional Gas Recovery Symposium. Pittsburgh: Society of Petroleum Engineers, 1982:559-571.
[2] RENSHAW C E, POLLARD D D. An experimentally verified criterion for propagation across unbounded frictional interfaces in brittle, linear elastic materials[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1995, 32(3): 237.
[3] WU K, OLSON J E. Mechanics analysis of interaction between hydraulic and natural fractures in shale reservoirs[C]//Unconventional Resources Technology Conference. Denver: Society of Exploration Geophysicists, American Association of Petroleum Geologists, Society of Petroleum Engineers, 2014: 1824-1841.
[4] JANG Y, KIM J, ERTEKIN T, et al. Fracture propagation model using multiple planar fracture with mixed mode in naturally fractured reservoir[J]. Journal of Petroleum Science and Engineering, 2016, 144: 19.
[5] WU K. Numerical modeling of complex hydraulic fracture development in unconventional reservoirs[D]. Austin: University of Texas at Austin, 2014.
[6] TALEGHANI A D, OLSON J E. How natural fractures could affect hydraulic-fracture geometry[J]. SPE Journal, 2013, 19(1): 161.
[7] HADDAD M, DU J, VIDAL-GILBERT S. Integration of dynamic microseismic data with a true 3D modeling of hydraulic fracture propagation in Vaca Muerta Shale[C]//SPE Hydraulic Fracturing Technology Conference. Woodlands: Society of Petroleum Engineers, 2016.
[8] WARPINSKI N, KRAMM R C, HEINZE J R, et al. Comparison of single-and dual-array microseismic mapping techniques in the Barnett Shale[C]//SPE Annual Technical Conference and Exhibition. Houston: Society of Petroleum Engineers, 2005: 95568.
[9] BEUGELSDIJK L J L, DE PATER C J, SATO K. Experimental hydraulic fracture propagation in a multi-fractured medium[C]//SPE Asia Pacific Conference on Integrated Modelling for Asset Management. Yokohama: Society of Petroleum Engineers, 2000: 1-8.
[10] CHUPRAKOV D, MELCHAEVA O, PRIOUL R. Injection-sensitive mechanics of hydraulic fracture interaction with discontinuities[J]. Rock Mechanics and Rock engineering, 2014, 47(5): 1625.
[11] CHEN Z, JEFFREY R G, ZHANG X, et al. Finite-element simulation of a hydraulic fracture interacting with a natural fracture[J]. SPE Journal, 2017, 22(1): 219.
[12] KRESSE O, WENG X, GU H, et al. Numerical modeling of hydraulic fractures interaction in complex naturally fractured formations[J]. Rock Mechanics and Rock Engineering, 2013, 46(3): 555.
[13] COOKE M L, UNDERWOOD C A. Fracture termination and step-over at bedding interfaces due to frictional slip and interface opening[J]. Journal of Structural Geology, 2001, 23(2): 223.
[14] JEFFREY R G, KEAR J, KASPERCZYK D, et al. A 2D experimental method with results for hydraulic fractures crossing discontinuities[C]//49th US Rock Mechanics/Geomechanics Symposium. San Francisco: American Rock Mechanics Association, 2015.
[15] MCCLURE M W, HORNE R N. Discrete fracture network modeling of hydraulic stimulation: coupling flow and geomechanics[M]. Dordrecht: Springer Science & Business Media, 2013.
[16] ZHANG X, JEFFREY R G. The role of friction and secondary flaws on deflection and re-initiation of hydraulic fractures at orthogonal pre-existing fractures[J]. Geophysical Journal International, 2006, 166(3): 1454.
[17] ZHANG X, JEFFREY R G, THIERCELIN M. Mechanics of fluid-driven fracture growth in naturally fractured reservoirs with simple network geometries[J]. Journal of Geophysical Research: Solid Earth, 2009, 114(B12):2158.
[18] SHEN B, SIREN T, RINNE M. Modelling fracture propagation in anisotropic rock mass[J]. Rock Mechanics and Rock Engineering, 2015, 48(3): 1070.
[19] TANG H, WINTERFELD P H, WU Y S, et al. Integrated simulation of multi-stage hydraulic fracturing in unconventional reservoirs [J]. Journal of Natural Gas Science and Engineering, 2016, 36: 875.
[20] TALEGHANI A D, AHMADI M, OLSON J E. Secondary fractures and their potential impacts on hydraulic fractures efficiency[C]//ISRM International Conference for Effective and Sustainable Hydraulic Fracturing. Brisbane:International Society for Rock Mechanics, 2013.

备注/Memo

备注/Memo:
收稿日期: 2017-03-25
基金项目: 国家自然科学基金项目(51674010); 国家科技重大专项(2016ZX05014)
通信作者: 邸 元(1968— ),男,陕西省西安人,副教授,博士,主要从事油藏数值模拟和岩土力学研究。E-mail:diyuan@mech.pku.edu.cn。
更新日期/Last Update: 1900-01-01