[1]孙淼,Guindo Mahamed Lamine,庄振华,等. 基于LIBS技术和卷积神经网络的土壤铅含量等级快速分类[J].浙江科技学院学报,2019,(05):373-380.
 SUN Miao,Guindo Mahamed Lamine,ZHUANG Zhenhua,et al. On fast classification of lead(Pb) levels in soil based on LIBS technology and convolutional neural network[J].,2019,(05):373-380.
点击复制

 基于LIBS技术和卷积神经网络的土壤铅含量等级快速分类(/HTML)
分享到:

《浙江科技学院学报》[ISSN:2097-5236/CN:33-1431/Z]

卷:
期数:
2019年05期
页码:
373-380
栏目:
出版日期:
2019-10-31

文章信息/Info

Title:
 On fast classification of lead(Pb) levels in soil based on LIBS technology and convolutional neural network
文章编号:
1671-8798(2019)05-0373-08
作者:
 孙淼Guindo Mahamed Lamine庄振华仲海鹏赵芸
 浙江科技学院 信息与电子工程学院,杭州 310023
Author(s):
 SUN Miao Guindo Mahamed Lamine ZHUANG Zhenhua ZHONG Haipeng ZHAO Yun
 School of information and electronic engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
关键词:
 激光诱导光谱技术卷积神经网络快速分类土壤修复
分类号:
TP183;S153.6
文献标志码:
A
摘要:
 将激光诱导击穿光谱(LIBS)技术与卷积神经网络(CNN)相结合用于土壤中铅(Pb)含量的分类研究,对5类不同污染程度的样本进行了分类试验。结果表明LIBSCNN方法可以实现土壤中Pb质量浓度等级的快速准确分类,准确度达到99%以上。相较于常用的化学方法,LIBS技术可以原位快速地对待测样品进行检测,样品预处理简单。因此LIBS CNN方法可以为后期土壤修复技术提供更加准确有效的数据,且节约大量的时间及成本,提高检测分辨率。

参考文献/References:

[1]尹文怡,刘玉柱,邱学军,等.激光诱导击穿光谱对四种香的快速检测[J].光谱学与光谱分析,2018,38(9):2957.
[2]王彩虹,黄林,陈添兵,等.水田污染区稻壳与糙米中铬元素的LIBS分析可行性[J].光谱学与光谱析,2017,37(11):3590.
[3]柯轲,吕勇,易灿灿.基于凸优化的激光诱导击穿光谱基线校正方法[J].光谱学与光谱分析,2018,38(7):2256.
[4]杨晖,王彩虹,刘木华,等.样品物理方法前处理提高猪肉中Pb元素的LIBS分析精度研究[J].光谱学与光谱分析,2017,37(8):2580.
[5]YU X J, LU H D, LIU Q Y. Deeplearningbased regression model and hyperspectral imaging for rapid detection of nitrogen concentration in oilseed rape (Brassica napus L.) leaf[J]. Chemometrics and Intelligent Laboratory Systems,2018,172:188.
[6]YU X J, LU H D, WU D. Development of deep learning method for predicting firmness and soluble solid content of postharvest Korla fragrant pear using Vis/NIR hyperspectral reflectance imaging[J]. Postharvest Biology and Technology,2018,141:39.
[7]YU X J, TANG L, WU X F, et al. Nondestructive freshness discriminating of shrimp using visible/nearinfrared hyperspectral imaging technique and deep learning algorithm[J]. Food Analytical Methods,2018,11:768.
[8]PENG J Y, SONG K L, ZHU H Y, et al. Fast detection of tobacco mosaic virus infected tobacco using laserinduced breakdown spectroscopy[J]. Scientific Reports,2017,7:44551.
[9]LIU X N, ZHANG Q, WU Z S, et al. Rapid elemental analysis and provenance study of blumea balsamifera DC using laserinduced breakdown spectroscopy[J]. Sensors,2015,15(1):642.
[10]孟德硕,赵南京,马明俊,等.基于激光诱导击穿光谱技术的土壤快速分类方法研究[J].光谱学与光谱分析,2017,37(1):241.
[11]余克强,何勇,刘飞.基于激光诱导击穿光谱的土壤类型判别分析[J].农业工程学报,2015,31(12):1.
[12]徐向君,王宪双,李昂泽,等.基于激光诱导击穿光谱的茶叶品种快速分类[J].中国激光,2010,46(3):285.
[13]BURAKOV V S, RAIKOV S N, TARASENKO N V, et al. Development of a laserinduced breakdown spectroscopy method for soil and ecological analysis (review)[J]. Journal of Applied Spectroscopy,2010,77(5):595.
[14]GALIOVA M, KAISER J, NOVOTNY K, et al. Utilization of laser induced breakdown spectroscopy for investigation of the metal accumulation in vegetal tissues[J]. Spectrochimica Acta Part B,2007,62:1597.
[15]SENESI G S, AGLIO M D, GIACOMO A D, et al. Elemental composition analysis of plants and composts used for soil remediation by laserinduced breakdown spectroscopy[J]. CleanSoil, Air, Water,2014,42(6):1.
[16]GALIOVA M, KAISER J, NOVOTNY K, et al. Utilization of laserassisted analytical methods for monitoring of lead and nutrition elements distribution in fresh and dried capsicum annuum L. leaves[J]. Microscopy Research and Technique,2011,74:845.
[17]GARCIMUN~O M, PACE D M, BERTUCCELLI G. Laserinduced breakdown spectroscopy for quantitative analysis of copper in algae[J]. Optics & Laser Technology,2013,47:26.
[18]刘健,袁谦,吴广,等.卷积神经网络综述[J].计算机时代,2018(11):5.
[19]张荣,李伟平,莫同.深度学习研究综述[J].信息与控制,2018,47(4):385.
[20]孙志远,鲁成祥,史忠植,等.深度学习研究与进展[J].计算机科学,2016,43(2):1.
[21]来文豪,周孟然,王亚,等.深度学习与激光诱导荧光在假酒识别中的应用[J].激光与光电子学进展,2018,55(4):388.

相似文献/References:

[1]张 伟,沈亚华. 气相色谱法测定神香苏合丸中冰片的含量 [J].浙江科技学院学报,2010,(02):85.
 ZHANG Wei,SHEN Ya-hua.Determination of content of borneol in Shenxiang Suhe pill by GC[J].,2010,(05):85.
[2]张银南. 微机接口实验辅助教学系统设计 [J].浙江科技学院学报,2010,(02):107.
 ZHANG Yin-nan.Design of assisted instruction system on computer interface experiment[J].,2010,(05):107.
[3]陈烨.小球在粘滞液体中运动情况的探讨 [J].浙江科技学院学报,2001,(02):1.
 Chen Ye.Discussion of the globule movement in the liquid of viscosity[J].,2001,(05):1.
[4]彭荷芬.翻译中的意义与阐释 [J].浙江科技学院学报,2001,(02):50.
 Peng He-fen.Meaning and interpretation[J].,2001,(05):50.
[5]李明.最可几速率与波耳兹曼因子 [J].浙江科技学院学报,2000,(02):10.
 Li Ming.The most probable speed and Boltzmann factor[J].,2000,(05):10.
[6]陶松垒 冯全宏 邱春芳 张志坚.塑料排水板加固水下软基的方法及设备 [J].浙江科技学院学报,2000,(03):33.
 Tao Songlei,Feng Quanhong,Qiu Chunfang,et al.Methods and devices for reinforcement of underwater soft\|ground with plastic drainage plate[J].,2000,(05):33.
[7]诸森儿 谢列卫 夏怡新 马莉萍.院级实验室管理体制改革的思考与实践 [J].浙江科技学院学报,2000,(03):40.
 Zhu Shener,Xie Liewei,Xia Yixin,et al.Reflection and practice on reformation of the college laboratory management system[J].,2000,(05):40.
[8]彭鸿广.研发竞赛中参与人的策略与发起者的收益研究 [J].浙江科技学院学报,2011,(03):234.[doi:10.3969/j.issn.1671-8798.2011.03.014]
 Peng Hong-guang.Contestants strategy choices and sponsor‘s revenue in R&D contest[J].,2011,(05):234.[doi:10.3969/j.issn.1671-8798.2011.03.014]
[9]陈烨.探测电路与导电介质对模拟静电场测绘的影响 [J].浙江科技学院学报,2000,(04):1.
 Chen Ye.The effect of measurement in simulating electrostatic field made by plumb circuit and conducting dielectric[J].,2000,(05):1.
[10]周文杰.分析流行潮头的大众化趋势 [J].浙江科技学院学报,2000,(04):60.
 Zhou Wen-jie.Popular tendency of prevalence trend[J].,2000,(05):60.

备注/Memo

备注/Memo:
收稿日期: 2019-03-13基金项目: 国家自然科学基金项目(61605173);浙江省自然科学基金项目(LY16C130003)通信作者: 赵芸(1981—),女,浙江省杭州人,副教授,博士,主要从事信息工程与人工智能研究。
更新日期/Last Update: