相似文献/References:
[1]孙淼,Guindo Mahamed Lamine,庄振华,等. 基于LIBS技术和卷积神经网络的土壤铅含量等级快速分类[J].浙江科技学院学报,2019,(05):373.
SUN Miao,Guindo Mahamed Lamine,ZHUANG Zhenhua,et al. On fast classification of lead(Pb) levels in soil based on LIBS technology and convolutional neural network[J].,2019,(01):373.
[2]丰明坤,周红,孙丽慧.基于视觉感知与学习的图像质量评价[J].浙江科技学院学报,2019,(6):444.
[3]马骏,钱亚冠,郭艳凯,等. 不均衡数据对卷积神经网络的影响及改进算法[J].浙江科技学院学报,2020,(03):181.
Influence upon and improved algorithm of convolutional neural networks under data imbalance[J].,2020,(01):181.
[4]沈梦婷,岑岗,周闻,等.基于CNN智能AI助手的早期教育系统设计[J].浙江科技学院学报,2020,(06):590.
Design of early education system based on CNN intelligent AI assistant[J].,2020,(01):590.
[5]毕云杉,钱亚冠,张超华,等.基于ERNIE模型的中文文本分类研究[J].浙江科技学院学报,2021,(06):461.
BI Yunshan,QIAN Yaguan,ZHANG Chaohua,et al.Research on Chinese text classification based on ERNIE model[J].,2021,(01):461.
[6]付乐,胡月,董虹伶,等.多时间尺度下变体生成式对抗网络的股价预测[J].浙江科技学院学报,2023,(01):72.
FU Le,HU Yue,DONG Hongling,et al.Stock price prediction with a variant generative adversarial network in multiple time scales[J].,2023,(01):72.