参考文献/References:
[1] 张晨希,张燕平,张迎春,等.基于支持向量机的股票预测[J].计算机技术与发展,2006(6):35.
[2] AKITA R, YOSHIHARA A, MATSUBARA T,et al. Deep learning for stock prediction using numerical and textual information[EB/OL].(2016-07-26)[2021-03-23].https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7550882.
[3] 彭燕,刘宇红,张荣芬.基于LSTM的股票价格预测建模与分析[J].计算机工程与应用,2019,55(11):209.
[4] 史建楠,邹俊忠,张见,等.基于DMD -LSTM模型的股票价格时间序列预测研究[J].计算机应用研究,2020,37(3):662.
[5] 赵红蕊,薛雷.基于LSTM-CNN-CBAM模型的股票预测研究[J].计算机工程与应用,2021,57(3):203.
[6] RAHMAN A S A, ABDUL-RAHMAN S, MUTALIB S. Mining textual terms for stock market prediction analysis using financial news[C]//International Conference on Soft Computing in Data Science. Singapore:Springer,2017.
[7] ZHANG X, ZHANG Y J, WANG S Z, et al. Improving stock market prediction via heterogeneous information fusion [J].Knowledge-Based Systems,2018,143:236.
[8] 张明禄.新闻事件驱动的市场预测研究[D].上海:上海交通大学,2013.
[9] SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]//Conference on Computer Vision and Pattern Recognition. Las Vegas:IEEE,2016:2818.
[10] HENSMAN P, AIZAWA K. cGAN-based manga colorization using a single training image[EB/OL].(2017-05-30)[2021-03-23].https://arxiv.org/pdf/1706.06918.pdf.
[11] 罗会兰,敖阳,袁璞.一种生成对抗网络用于图像修复的方法[J].电子学报,2020,48(10):1891.
[12] ZHOU X Y, PAN Z S, HU G Y, et al. Stock market prediction on high-frequency data using generative adversarial nets[J].Mathematical Problems in Engineering,2018,special issue:1.
[13] ZHANG K, ZHONG G Q, DONG J Y, et al. Stock market prediction based on generative adversarial network[J].Procedia Computer Science,2019,147:400.
[14] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J].Neural Computation,1997,9(8):1735.
[15] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J].Advances in Neural Information Processing Systems,2014,3:2672.
[16] GULRAJANI I, AHMED F, ARJOVSKY M, et al. Improved training of Wasserstein GANs[C]//Proceedings of the 31st Annual Conference on Neural Information Processing Systems. New York:Neural Information Processing Systems Foundation,2017:5769.
[17] 李舟军,范宇,吴贤杰.面向自然语言处理的预训练技术研究综述[J].计算机科学,2020,47(3):170.
[18] 王子牛,姜猛,高建瓴,等.基于BERT的中文命名实体识别方法[J].计算机科学,2019,46(增刊2):138.
[19] CORREIA G M, NICULAE V, MARTINS A F T. Adaptively sparse transformers[EB/OL].(2019-08-30)[2021-03-23].https://arxiv.org/pdf/1909.00015v1.pdf.
[20] ARACI D T. FinBERT:financial sentiment analysis with pre-trained language models[EB/OL].(2019-06-25)[2021-03-23].https://arxiv.org/pdf/1908.10063.pdf.
[21] 侍冰雪,魏慧茹,朱韶东,等.基于网络结构的股票相关性研究[J].浙江科技学院学报,2015,27(1):62.
[22] 张杰,王茁.基于傅里叶分析法的股票市场超高频数据相关性分析[J].数学的实践与认识,2010,40(7):63.