[1]岑 岗,蔡永平,岑跃峰.基于深度学习的永磁同步电机温度预测模型[J].浙江科技大学学报,2022,(03):216-224.[doi:10.3969/j.issn.1671-8798.2022.03.003 ]
 CEN Gang,CAI Yongping,CEN Yuefeng.Temperature prediction model for permanent magnet synchronous motors based on deep learning[J].,2022,(03):216-224.[doi:10.3969/j.issn.1671-8798.2022.03.003 ]
点击复制

基于深度学习的永磁同步电机温度预测模型(/HTML)
分享到:

《浙江科技大学学报》[ISSN:2097-5236/CN:33-1431/Z]

卷:
期数:
2022年03期
页码:
216-224
栏目:
出版日期:
2022-06-30

文章信息/Info

Title:
Temperature prediction model for permanent magnet synchronous motors based on deep learning
文章编号:
1671-8798(2022)03-0216-09
作者:
岑 岗蔡永平岑跃峰
(浙江科技学院 信息与电子工程学院,杭州 310023)
Author(s):
CEN Gang CAI Yongping CEN Yuefeng
(School of Information and Electronic Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China)
关键词:
永磁同步电机 温度预测 嵌套式门控循环单元 卷积神经网络
分类号:
TP183; U469.72
DOI:
10.3969/j.issn.1671-8798.2022.03.003
文献标志码:
A
摘要:
为有效预测永磁同步电机的温度,首先使用嵌套结构对门控循环单元(gated recurrent unit,GRU)进行改进,提出一种嵌套式门控循环单元(nested gated recurrent unit,NGRU)网络,NGRU能对相关温度特征中的噪声进行过滤,并挖掘温度随时间变化的规律,再经过非线性变换提取深层的温度特征; 然后提出一种新型深度学习模型,即一维卷积神经网络(1D convolutional neural networks,1D-CNN)串联NGRU(1D-CNN tandem NGRU,CNGRU),CNGRU利用1D-CNN对输入特征进行初步提取,得到多角度的永磁同步电机相关温度特征作为NGRU的输入,以串联的结构融合二者的优势,得到永磁同步电机的预测温度。试验结果表明,对比其他循环网络在定子轭、定子齿和定子绕组温度上的预测表现,NGRU均方误差平均降低12.44%,无穷范数平均降低0.361 9; CNGRU在此基础上比NGRU均方误差平均降低13.29%,无穷范数平均降低0.579 6。CNGRU比NGRU及其他循环网络对永磁同步电机温度的预测,具有更高的精度和稳定性,这为保证电机的安全稳定运行提供了技术保障。

参考文献/References:

[1] 孙竟成.基于热网络法的永磁同步电机三维温度场研究[D].天津:天津大学,2016.
[2] SI J, ZHAO S, FENG H, et al. Analysis of temperature field for a surface-mounted and interior permanent magnet synchronous motor adopting magnetic-thermal coupling method[J].CES Transactions on Electrical Machines and Systems,2018,2(1):166.
[3] FANG J, DING S, SUN Y, et al. Signal injection method without torque ripple for stator winding temperature estimation of surface-mounted PMSM drive systems[J].Journal of Power Electronics,2020,20(6):1504.
[4] 丁树业,朱敏,江欣.永磁同步电机三维全域温度场与温度应力耦合研究[J].电机与控制学报,2018,22(1):53.
[5] 刘平,王鑫,孙千志,等.永磁同步电机定子绕组温度估计的信号注入策略优化[J].电机与控制学报,2019,23(11):18.
[6] 丁树业,江欣,朱敏,等.基于集总参数热网络法的永磁同步电机启动及稳态温升分析[J].电机与控制学报,2020,24(5):143.
[7] BALAMURALI A, KUNDU A, CLANDFIELD W, et al. Non-invasive parameter and loss determination in PMSM consideringthe effects of saturation, cross-saturation, time harmonics and temperature variations[J].IEEE Transactions on Magnetics,2021,57(2):340.
[8] WALLSCHEID O, KIRCHGÄSSNER W, BÖCKER J. Investigation of long short-term memory networks to temperature prediction for permanent magnet synchronous motors[C]//2017 International Joint Conference on Neural Networks(IJCNN). Anchorage:IEEE,2017:1940.
[9] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J].Neural Computation,1997,9(8):1735.
[10] KIRCHGÄSSNER W, WALLSCHEID O,BÖCKER J. Deep residual convolutional and recurrent neural networks for temperature estimation in permanent magnet synchronous motors[C]//2019 IEEE International Electric Machines & Drives Conference(IEMDC). Santiago:IEEE,2019:1439.
[11] GUO H, DING Q, SONGY, et al. Predicting temperature of permanent magnet synchronous motor based on deep neural network[J].Energies,2020,13(18):4782.
[12] WANG X F, ZHANG Y. Multi-step-ahead time series prediction method with stacking LSTM neural network[C]//2020 3rd International Conference on Artificial Intelligence and Big Data(ICAIBD). Chengdu:IEEE,2020:51.
[13] WANG X, XU L, CHEN K. Data-driven short-term forecasting for urban road network traffic based on data processing and LSTM-RNN[J].Arabian Journal for Science and Engineering,2019,44(4):3043.
[14] CHUNG J, GULCEHRE C, CHO K H, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[EB/OL].(2014-12-19)[2021-06-10].https://arxiv.org/abs/1412.3555.
[15] KIRANYAZ S, AVCI O, ABDELJABER O, et al. 1D convolutional neural networks and applications:a survey[J].Mechanical Systems and Signal Processing,2021,151:107398.
[16] WALLSCHEID O, BÖCKER J. Global identification of a low-order lumped-parameter thermal network for permanent magnet synchronous motors[J].IEEE Transactions on Energy Conversion,2015,31(1):354.

相似文献/References:

[1]方伟明,康敏.永磁同步电机无位置传感器控制下的参数辨识[J].浙江科技大学学报,2021,(06):469.
 FANG Weiming,KANG Min.Parameter identification of position sensorless control for PMSM[J].,2021,(03):469.
[2]曹泽炜,王子辉,何致远,等.永磁同步电机无位置传感估测的参数扰动校正[J].浙江科技大学学报,2022,(06):492.
 CAO Zewei,WANG Zihui,HE Zhiyuan,et al.Research on parameter disturbance correction based on sensorless estimation of PMSM[J].,2022,(03):492.

备注/Memo

备注/Memo:
收稿日期:2021-06-10
基金项目:教育部人文社会科学研究一般规划基金项目(17YJA880004)
通信作者:岑 岗(1959— ),男,浙江省象山人,教授,主要从事教育信息科学与技术和人工智能研究。E-mail:gcen@163.com。
更新日期/Last Update: 2022-06-30