参考文献/References:
[1] CHERRYK M, QIAN L L.Scaling up molecular pattern recognition with DNA-based winner-take-all neural networks[J]. Nature, 2018,559(7714):370.
[2] 吴倩,曹春杰.基于k-WTA的对抗样本防御模型研究[J].海南大学学报(自然科学版),2021,39(4):340.
[3] ZHANG Y H, XIANG S Y, GUO X X, et al. The winner-take-all mechanism for all-optical systems of pattern recognition and max-pooling operation[J]. Journal of Lightwave Technology,2020,38(18):5071.
[4] CHEN Z J, ZHANG J D, WEN S C, et al. Competitive neural network circuit based on winner-take-all mechanism and online hebbian learning rule[J]. IEEE Transactions on Very Large Scale Integration(VLSI)Systems,2021,29(6):1095.
[5] MAJANIE, ERLANSON R, ABU-MOSTAFA Y S. On the k-winners-take-all network[J]. Advances in Neural Information Processing Systems,1988,1:1.
[6] CALVERT B D, MARINOV C A. Another k-winners-take-all analog neural network[J]. IEEE Transactions on Neural Networks,2000,11(4):829.
[7] LIU S B, WANG J. A simplified dual neural network for quadratic programming with its KWTA application[J]. IEEE Transactions on Neural Networks,2006,17(6):1500,1502.
[8] HU X B, WANG J. An improved dual neural network for solving a class of quadratic programming problems and its k-winners-take-all application[J]. IEEE Transactions on Neural networks,2008,19(12):2022-2023.
[9] WANG J. Analysis and design of a k-winners-take-all model with a single state variable and the heaviside step activation function[J]. IEEE Transactions on Neural Networks,2010,21(9):1496,1498.
[10] LIU Q, DANG C, CAO J. A novel recurrent neural network with one neuron and finite-time convergence for k-winners-take-all operation[J]. IEEE Transactions on Neural Networks,2010,21(7):1140-1141.
[11] PENG B, JIN L, SHANG M. Multi-robot competitive tracking based on k-WTA neural network with one single neuron[J]. Neurocomputing,2021,460:1.
[12] QI Y M, JIN L, LUO X, et al. Robust k-WTA network generation, analysis, and applications to multiagent coordination[J]. IEEE Transactions on Cybernetics,2022,52(8):8515.
[13] LIU M, ZHANG X Y, SHANG M S, et al. Gradient-based differential k-WTA network with application to competitive coordination of multiple robots[J]. IEEE/CAA Journal of Automatica Sinica,2022,9(8):1452.
[14] LI S, ZHOU M C, LUO X, et al. Distributed winner-take-all in dynamic networks[J]. IEEE Transactions on Automatic Control,2016,62(2):577
[15] JIN L, LI S. Distributed task allocation of multiple robots:a control perspective[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems,2016,48(5):693.
[16] JIN L, LI S, LA H M, et al. Dynamic task allocation in multi-robot coordination for moving target tracking:a distributed approach[J]. Automatica,2019,100(7):75.
[17] HESPANHA J P. Uniform stability of switched linear systems:extensions of LaSalle's invariance principle[J]. IEEE Transactions on Automatic Control,2004,49(4):470.
[18] JADBABAIE A, LIN J, MORSEA S. Coordination of groups of mobile autonomous agents using nearest neighbor rules[J]. IEEE Transactions on Automatic Control,2003,48(6):988.
[19] ZHANG Y Y, LI S, WENG J. Distributed estimation of algebraic connectivity[J]. IEEE Transactions on Cybernetics,2022,52(5):3047.
[20] 高畅,孔颖,胡汤珑.基于有限时间神经网络求解的时变复数矩阵方程[J].浙江科技学院学报,2022,34(5):409.