参考文献/References:
[1] 郑玉珩,黄德启.改进MobileViT与YOLOv4的轻量化车辆检测网络[J].电子测量技术,2023,46(2):175.
[2] DONG X D, YAN S, DUAN C Q. A lightweight vehicles detection network model based on YOLOv5[J]. Engineering Applications of Artificial Intelligence, 2022, 113:104914.
[3] 胡伟超,郭宇阳,张奇,等.基于改进YOLOX的轻量化交通监控目标检测算法[J].计算机工程与应用,2024,60(7):167.
[4] 刘浩翰,樊一鸣,贺怀清,等.改进YOLOv7-tiny的目标检测轻量化模型[J].计算机工程与应用,2023,59(14):166.
[5] 周飞,郭杜杜,王洋,等.基于改进YOLOv8的交通监控车辆检测算法[J].计算机工程与应用,2024,60(6):110.
[6] 张利丰,田莹.改进YOLOv8的多尺度轻量型车辆目标检测算法[J].计算机工程与应用,2024,60(3):129.
[7] ZHENG X, ZOU J, DU S, et al. Small target detection in refractive panorama surveillance based on improved YOLOv8[J]. Sensors, 2024, 24(3):819.
[8] NIU Y, CHENG W, SHI C, et al. YOLOv8-CGRNet:a lightweight object detection network leveraging context guidance and deep residual learning[J]. Electronics, 2023, 13(1):43.
[9] LIU Q, YE H, WANG S, et al. YOLOv8-CB:dense pedestrian detection algorithm based on In-Vehicle camera[J]. Electronics, 2024, 13(1):236.
[10] LI N, YE T, ZHOU Z, et al. Enhanced YOLOv8 with BiFPN-SimAM for percise defect detection in miniature capacitors[J]. Applied Sciences, 2024, 14(1):429.
[11] ZHU X Z, HU H, LIN S, et al. Deformable convnets v2:more deformable, better results[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Long Beach:IEEE/CVF, 2019:9308.
[12] WANG Q L, WU B G, ZHU P F, et al. ECA-Net:Efficient channel attention for deep convolutional neural networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern recognition. Seattle:IEEE/CVF, 2020:11534.
[13] LIN T Y, DOLLáR P, GIRSHICK R, et al. Feature pyramid networks for object detection [C] // Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu:IEEE, 2017:936.
[14] LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation [C] // Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City:IEEE/CVF, 2018:8759.
[15] TAN M, PANG R, LE Q V. Efficientdet:scalable and efficient object detection [C] // Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle:IEEE/CVF, 2020:10781.