[1]徐志任,斯吴强,胡文龙,等.双金属Ni-Cu催化剂对顺酐选择性加氢产物的调控[J].浙江科技大学学报,2024,(05):417-426.[doi:10.3969/j.issn.2097-5236.2024.05.007]
 XU Zhiren,SI Wuqiang,HU Wenlong,et al.Regulation of Ni-Cu bimetallic catalysts on selective hydrogenation products of maleic anhydride[J].,2024,(05):417-426.[doi:10.3969/j.issn.2097-5236.2024.05.007]
点击复制

双金属Ni-Cu催化剂对顺酐选择性加氢产物的调控(/HTML)
分享到:

《浙江科技大学学报》[ISSN:2097-5236/CN:33-1431/Z]

卷:
期数:
2024年05期
页码:
417-426
栏目:
出版日期:
2024-10-28

文章信息/Info

Title:
Regulation of Ni-Cu bimetallic catalysts on selective hydrogenation products of maleic anhydride
文章编号:
2097-5236(2024)05-0417-10
作者:
徐志任1斯吴强1胡文龙1黄卫国2邢 闯1
(1.浙江科技大学 生物与化学工程学院,杭州 310023; 2.浙江联盛化学股份有限公司,浙江 台州 318000)
Author(s):
XU Zhiren1 SI Wuqiang1 HU Wenlong1 HUANG Weiguo2 XING Chuang1
(1.School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China; 2.Zhejiang Realsun Chemical Co., Ltd, Taizhou 318000, Zhejiang, China)
关键词:
Ni-Cu催化剂 选择性加氢 顺酐 γ-丁内酯 丁二酸酐
分类号:
TQ050.43
DOI:
10.3969/j.issn.2097-5236.2024.05.007
文献标志码:
A
摘要:
【目的】为探索金属催化剂在α,β -不饱和羰基化合物上选择性加氢C=O、C=C双键的规律,设计了Ni-Cu双金属催化剂。【方法】通过蒸氨法制备一系列的Ni-Cu/SiO2双金属催化剂,采用固定床装置进行常压顺酐(maleic anhydride, MA)加氢反应,研究了不同比例的Ni-Cu催化剂对顺酐选择性加氢产物的调控规律。【结果】Ni-Cu/SiO2催化剂比表面积越大,氢气吸附能力越强,催化活性越高,其转化率均能达到99%以上。Ni、Cu含量和反应温度是影响顺酐选择性加氢产物分布的主要因素。Ni金属虽有利于γ-丁内酯(γ-butyrolactone, GBL)的生成,但其副产物丙酸较高。同时温度的升高也会造成酸类副产物上升,因此Ni金属适用于低温条件下的 C=C 加氢,主要生成丁二酸酐(succinic anhydride, SA); Cu金属参与反应得到的酸类副产物少,GBL+SA选择性高,因此Cu金属则更适用于高温条件下的C=O加氢,γ-丁内酯为主要产物。【结论】本研究结果能为顺酐加氢制γ-丁内酯联产丁二酸酐工艺大规模工业化生产提供参考。

参考文献/References:

[1] ZHU J, DING X, LI D, et al. Graphene oxide-supported catalyst with thermoresponsive smart surface for selective hydrogenation of cinnamaldehyde[J]. ACS Applied Materials & Interfaces,2019,11(18):16443.
[2] MURATA K, OGURA K, OHYAMA J, et al. Selective hydrogenation of cinnamaldehyde over the stepped and plane surface of Pd nanoparticles with controlled morphologies by CO chemisorption[J]. ACS Applied Materials & Interfaces,2020,12(23):26002.
[3] STUCCHI M, MANZOLI M, BOSSOLA F, et al. Ruling factors in cinnamaldehyde hydrogenation:activity and selectivity of Pt-Mo catalysts[J]. Nanomaterials,2021,11(2):362.
[4] ZHANG W, SHI W, JI W, et al. Microenvironment of MOF channel coordination with Pt NPs for selective hydrogenation of unsaturated aldehydes[J]. ACS Catalysis, 2020,10(10):5805.
[5] YE H, ZHAO H, JIANG Y, et al. Catalytic transfer hydrogenation of the C=O bond in unsaturated aldehydes over Pt nanoparticles embedded in porous UiO-66 nanoparticles[J]. ACS Applied Nano Materials,2020,3(12):12260.
[6] MAHATA N, CUNHA A F, ÓRFÃO J J M, et al. Highly selective hydrogenation of C=C double bond in unsaturated carbonyl compounds over NiC catalyst[J]. Chemical Engineering Journal,2012,188:155.
[7] PRAKASH M G, MAHALAKSHMY R, KRISHNAMURTHY K R, et al. Studies on Ni-M(M = Cu, Ag, Au)bimetallic catalysts for selective hydrogenation of cinnamaldehyde[J]. Catalysis Today,2016,263:105.
[8] JOSEPH ANTONY RAJ K, PRAKASH M G, ELANGOVAN T, et al. Selective hydrogenation of cinnamaldehyde over cobalt supported on alumina, silica and titania[J]. Catalysis Letters,2012,142(1):87.
[9] DONG F, ZHU Y, ZHENG H, et al. Cr-free Cu-catalysts for the selective hydrogenation of biomass-derived furfural to 2-methylfuran:the synergistic effect of metal and acid sites[J]. Journal of Molecular Catalysis A:Chemical,2015,398:140.
[10] 黄建兴,陈臣举,魏超,等.顺酐加氢合成1,4-丁二醇催化剂的研究进展[J].化学世界,2023,64(6):409.
[11] 李太平,张涛,黄家兴,等.顺酐加氢制备γ -丁内酯催化剂研究进展[J].应用化工,2023,52(7):2192.
[12] MEYER C I, REGENHARDT S A, BERTONE M E, et al. Gas-phase maleic anhydride hydrogenation over Ni/SiO2-Al2O3 catalysts:effect of metal loading[J]. Catalysis Letters,2013,143(10):1067.
[13] 赵永祥,秦晓琴,武志刚,等.NiO-SiO2,NiO-Al2O3和NiO-Al2O3-SiO2催化剂上顺酐选择加氢性能的比较[J].燃料化学学报,2003(3):263.
[14] 夏晓丽,谭静静,卫彩云,等.钼改性页硅酸镍催化剂催化顺酐加氢性能[J].高等学校化学学报,2019,40(6):1207.
[15] 邱爱玲.顺酐加氢制γ -丁内酯Cu-CeO2-Al2O3催化剂失活与再生研究[J].能源化工,2015,36(3):4.
[16] LIU M, YUAN L, FAN G, et al. NiCu nanoparticles for catalytic hydrogenation of biomass-derived carbonyl compounds[J]. ACS Applied Nano Materials,2020,3(9):9226.
[17] BIAN Z, KAWI S. Highly carbon-resistant Ni-Co/SiO2 catalysts derived from phyllosilicates for dry reforming of methane[J]. Journal of CO2 Utilization,2017,18:345.
[18] BAWAKED S, NARASIMHARAO K. Structural and catalytic properties of copper silicate nanomaterials[J]. Scientific Reports,2020,10(1):518.
[19] GONG J, YUE H, ZHAO Y, et al. Synthesis of ethanol via syngas on Cu/SiO2 catalysts with balanced Cu0-Cu+ sites[J]. Journal of the American Chemical Society,2012,134(34):13922.
[20] ZHOU S, KANG L, ZHOU X, et al. Pure acetylene semihydrogenation over Ni-Cu bimetallic catalysts:effect of the Cu/Ni ratio on catalytic performance[J]. Nanomaterials,2020,10(3):509.
[21] PANG J, ZHENG M, WANG C, et al. Hierarchical echinus-like Cu-MFI catalysts for ethanol dehydrogenation[J]. ACS Catalysis,2020,10(22):13624.
[22] DING J, POPA T, TANG J, et al. Highly selective and stable Cu/SiO2 catalysts prepared with a green method for hydrogenation of diethyl oxalate into ethylene glycol[J]. Applied Catalysis B:Environmental,2017,209:530.
[23] DU H, MA X, JIANG M, et al. Efficient Ni/SiO2 catalyst derived from nickel phyllosilicate for xylose hydrogenation to xylitol[J]. Catalysis Today,2021,365:265.
[24] MEYER C I, REGENHARDT S A, MARCHI A J, et al. Gas phase hydrogenation of maleic anhydride at low pressure over silica-supported cobalt and nickel catalysts[J]. Applied Catalysis A:General,2012,417/418:59.

备注/Memo

备注/Memo:
收稿日期:2023-11-29
基金项目:浙江省自然科学基金项目(LY23B060002,LY23B060001); 国家自然科学基金项目(22278376)
通信作者:邢 闯(1986— ),男,辽宁省大石桥人,副教授,博士,主要从事工业催化研究。E-mail:xing@zust.edu.cn。
更新日期/Last Update: 2024-10-28