[1]谢作甫,蒋益铠,余 坚,等.硝化和厌氧氨氧化过程亚硝酸盐电化学传感研究[J].浙江科技大学学报,2024,(05):444-456.[doi:10.3969/j.issn.2097-5236.2024.05.010]
 XIE Zuofu,JIANG Yikai,YU Jian,et al.Electrochemical sensing of nitrite in nitrification and anaerobic ammonia oxidation processes[J].,2024,(05):444-456.[doi:10.3969/j.issn.2097-5236.2024.05.010]
点击复制

硝化和厌氧氨氧化过程亚硝酸盐电化学传感研究(/HTML)
分享到:

《浙江科技大学学报》[ISSN:2097-5236/CN:33-1431/Z]

卷:
期数:
2024年05期
页码:
444-456
栏目:
出版日期:
2024-10-28

文章信息/Info

Title:
Electrochemical sensing of nitrite in nitrification and anaerobic ammonia oxidation processes
文章编号:
2097-5236(2024)05-0444-13
作者:
谢作甫12蒋益铠1余 坚3宋亚丽12
(1.浙江科技大学 土木与建筑工程学院,杭州 310023; 2.浙江-新加坡城市更新与未来城市联合实验室,杭州 310023; 3.浙江沃乐科技有限公司,杭州 311121)
Author(s):
XIE Zuofu12 JIANG Yikai1 YU Jian3 SONG Yali12
(1.School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China; 2.Zhejiang-Singapore Joint Laboratory for Urban Renewal and Future City, Hangzhou 310023, Zhejiang, China; 3.Zhejiang Water-H
关键词:
废水 硝化 厌氧氨氧化 亚硝酸盐 电导率 电化学传感
分类号:
X703
DOI:
10.3969/j.issn.2097-5236.2024.05.010
文献标志码:
A
摘要:
【目的】实时反映硝化和厌氧氨氧化(anaerobic ammonia oxidation, ANAMMOX)过程中亚硝酸盐质量浓度变化及反应动态。【方法】采用循环伏安法(cyclic voltammetry, CV)和计时电流法(chronoamperometry, CA)对模拟废水及反应液中亚硝酸盐的电化学氧化信号及其影响因素进行分析与研究。【结果】模拟废水CV测试的氧化峰电流(Ip)与亚硝酸盐质量浓度成正比,且pH和电导率(κ)变化对Ip影响较小,但因CV测试用时较长,难以实时反映亚硝酸盐质量浓度变化情况; 模拟废水CA测试稳态电流(Iκ)和κ对亚硝酸盐质量浓度变化响应迅速,以Iκ和κ作为传感信号,可以较为准确地反映亚硝酸盐质量浓度变化情况。反应液Iκ和κ变化与硝化和ANAMMOX过程具有较强相关性,以Iκ和κ作为传感信号,可以实时反映硝化和ANAMMOX反应动态进程及亚硝酸盐质量浓度变化情况。【结论】本研究结果可有力促进硝化和厌氧氨氧化的过程控制,助力短程硝化/厌氧氨氧化(partial nitritation/ANAMMOX,PN/A)工艺的推广和应用。

参考文献/References:

[1] 何理,徐丽,卢宏玮,等.1990~2018年长江经济带农田氮素平衡转变特征[J].中国环境科学,2021,41(10):4820.
[2] HORD N G. Regulation of dietary nitrate and nitrite:balancing essential physiological roles with potential health risks[M]. Berlin:Springer International Publishing, 2011:153.
[3] RANGEL-BUITRAGO N, GALGANI F, NEAL W J. Addressing the global challenge of coastal sewage pollution[J]. Marine Pollution Bulletin, 2024,201:1.
[4] SUN S P, NACHER C P, MERKEY B, et al. Effective biological nitrogen removal treatment processes for domestic wastewaters with low C/N ratios:a review[J]. Environmental Engineering Science, 2010, 27(2):111.
[5] 孙婷婷,涂耀仁,罗鹏程,等.城市水体氮污染类型及同位素溯源研究[J].上海师范大学学报(自然科学版),2023,52(1):146.
[6] CANO V, NOLASCO M A, KURT H, et al. Comparative assessment of energy generation from ammonia oxidation by different functional bacterial communities[J]. Science of the Total Environment, 2023, 869:1.
[7] KARTAL B, KUENEN J G, VAN LOOSDRECHT M C M. Sewage treatment with anammox[J]. Science, 2010, 328(5979):702.
[8] FENG D B, HE Y X, LU W K, et al. Achieving stable advanced nitrogen removal from mainstream municipal wastewater using integrated strategies in partial nitrification anammox(PNA)granular hybrid system[J]. Chemical Engineering Journal, 2024, 486:1.
[9] ZHANG Y X, DENG J Y, XIAO X, et al. Insights on pretreatment technologies for partial nitrification/anammox processes:a critical review and future perspectives[J]. Bioresource Technology, 2023, 384:1.
[10] 聂铭,李振轮.水体中亚硝酸盐积累的生物过程及影响因素研究进展[J].生物工程学报,2020,36(8):1493.
[11] BRATTON A C, MARSHALL E K. A new coupling component for sulfanilamide determination[J]. Journal of Biological Chemistry, 1939, 128(2):537.
[12] ZHANG K G, LI S Y, LIU C, et al. A hydrophobic deep eutectic solvent-based vortex-assisted dispersive liquid-liquid microextraction combined with HPLC for the determination of nitrite in water and biological samples[J]. Journal of Separation Science, 2018, 42(2):574.
[13] 任朝兴,龙慧琴,刘燕,等.干扰物质对气相分子吸收光谱法测定水中亚硝酸盐氮的影响探讨[J].中国无机分析化学,2022,12(5):65.
[14] YIN H Y, WAN Y, WANG L. Au/NiO/multi-walled carbon nanotubes nanocomposite electrode for nitrite electrochemical determination[J]. Journal of Nanoscience and Nanotechnology, 2019(8):5279.
[15] FERLAZZO A, BRESSI V, ESPRO C, et al. Electrochemical determination of nitrites and sulfites by using waste-derived nanobiochar[J]. Journal of Electroanalytical Chemistry, 2023, 928:1.
[16] LI B, MENG T H, XIE X M, et al. Fe-based composites-enabled electrochemical sensors for nitrite detection:a review[J]. Materials Today Chemistry, 2023, 33:1.
[17] CANALES C, ANTILÉN M, CHAPA M, et al. Electro-oxidation of nitrite using an oxidized glassy carbon electrode as amperometric sensor[J]. Electrocatalysis, 2015, 6(3):300.
[18] KOZUB B R, REES N V, COMPTON R G. Electrochemical determination of nitrite at a bare glassy carbon electrode:why chemically modify electrodes[J]. Sensors and Actuators B:Chemical, 2012, 143(2):539.
[19] ALAM M S, RAHMAN M M, MARWANI H M, et al. Insights of temperature dependent catalysis and kinetics of electro-oxidation of nitrite ions on a glassy carbon electrode[J]. Electrochimica Acta, 2020, 362:1.
[20] 谢作甫,郑平,厉巍,等.ANAMMOX过程性能与电导率变化[J].化工学报,2013,64(7):2633.
[21] American Public Health Association. Standard methods for the examination of water and wastewater[M]. Washington D C:American Public Health Association, 1998:1.
[22] 王宇,陈雅岚,冯金玥,等.活化玻碳电极直接快速检测亚硝酸盐[J].分析科学学报,2019,35(2):261.
[23] GUIDELLI R, PERGOLA F, RASPI G. Voltammetric behavior of nitrite ion on platinum in neutral and weakly acidic media[J]. Analytical Chemistry, 1972, 44(4):745.
[24] FENG R Q, FAN Y, FANG Y, et al. Morphological effects of Au nanoparticles on electrochemical sensing platforms for nitrite detection[J]. Molecules, 2023, 28:1.
[25] BEIGMORADI F, BEITOLLAHI H.Voltammetric determination of nitrite using modified glassy carbon electrode[J]. Surface Engineering and Applied Electrochemistry, 2024, 60(1):15.
[26] JIANG Y N, LUO H Q, LI N B. Determination of nitrite with a nano-gold modified glassy carbon electrode by cyclic voltammetry[J]. International Journal of Environmental Analytical Chemistry, 2007, 87(4):295.
[27] 郑冬云,刘晓军,朱珊莹,等.电化学传感法测定水中亚硝酸盐[J].中国环境监测,2014,30(4):140.
[28] NAJMEH S, MEISSAM N. Nanoraspberry-like copper/reduced graphene oxide as new modifier for simultaneous determination of benzenediols isomers and nitrite[J]. Analytica Chimica Acta, 2019, 1056:16.
[29] 陈莹,庄国顺,郭志刚.近海营养盐和微量元素的大气沉降[J].地球科学进展,2010,25(7):682.
[30] BARD J A, FAULKNER L R. Electrochemical methods:fundamentals and applications[M]. Hoboken:John Wiley&Sons, 2001:97.
[31] 何尚卫,张雷,张超,等.工业污水处理厂生化出水氨氮周年变化及原因分析[J].化工进展,2018,37(9):3691.
[32] 韩雪恪,王峥嵘,彭永臻,等.几种重要因素对厌氧氨氧化过程的影响综述[J].中国环境科学,2023,43(5):2220.
[33] 中华人民共和国工业和信息化部.循环伏安溶出分析仪校准规范:JJF 0043—2019[S].北京:中国发展出版社,2020:1.
[34] 黑龙江市场监督管理局.水质 游离氯和总氯的测定 电化学法:DB23/T 2751—2020[S/OL].[2024-06-15].http://wap.csres.com/detail/360258.html.
[35] 戴兴德,张爱菊,张小林.活化玻碳电极直接测定牛奶中的亚硝酸盐[J].中国卫生检验杂志,2015(19),25:3266.
[36] ZHAO K M, ZHANG Z Y, ZHOU Y H, et al. Ag-CeO2 based on electrochemical sensor for high-efficient on-site detection of nitrite in aquaculture water and beverages[J]. Molecules, 2024, 29:1.
[37] ZHOU L, WANG J P, LING G, et al. An amperometric sensor based on ionic liquid and carbon nanotube modified composite electrode for the determination of nitrite in milk[J]. Sensors and Actuators B:Chemical, 2013, 181:65.
[38] FENG J J, ZHANG P P, WANG A J, et al. One-pot hydrothermal synthesis of uniform β -MnO2 nanorods for nitrite sensing[J]. Journal of Colloid and Interface Science, 2011, 359(1):1.
[39] MARLINDA A R, PANDIKUMAR A, YUSOFF N, et al. Electrochemical sensing of nitrite using a glassy carbon electrode modified with reduced functionalized graphene oxide decorated with flower-like zinc oxide[J]. Microchimica Acta, 2015, 182:1113.
[40] 郑平,冯孝善.废物生物处理[M].北京:高等教育出版社,2006:373.
[41] 褚俊杰,王宗旭,白璐,等.电催化反应电极界面纳微气泡多尺度研究进展[J].中国科学:化学,2024,54(6):892.
[42] 王佳,李相波,王伟.海水环境中微生物附着对钝性金属开路电位的影响[J].中国腐蚀与防护学报,2004(5):7.

备注/Memo

备注/Memo:
收稿日期:2024-06-17
基金项目:浙江省自然科学基金项目(LY16E080007)
通信作者:宋亚丽(1974— ),女,吉林省公主岭人,教授,博士,主要从事微污染水的处理及水中新兴污染物的控制研究。E-mail:yali_song@sina.com。
更新日期/Last Update: 2024-10-28