[1]周俊文,孔颖,PersevearanceMarecha.基于多机器人竞争行为的分布式k-WTA算法[J].浙江科技大学学报,2024,(01):40-48.[doi:10.3969/j.issn.1671-8798.2024.01.005 ]
 ZHOU Junwen,KONG Ying,Persevearance Marecha.On distributed k-WTA algorithm for competitive behaviors of multi-robots[J].,2024,(01):40-48.[doi:10.3969/j.issn.1671-8798.2024.01.005 ]
点击复制

基于多机器人竞争行为的分布式k-WTA算法(/HTML)
分享到:

《浙江科技大学学报》[ISSN:2097-5236/CN:33-1431/Z]

卷:
期数:
2024年01期
页码:
40-48
栏目:
出版日期:
2024-02-29

文章信息/Info

Title:
On distributed k-WTA algorithm for competitive behaviors of multi-robots
文章编号:
1671-8798(2024)01-0040-09
作者:
周俊文孔颖PersevearanceMarecha
(浙江科技大学 信息与电子工程学院,杭州 310023)
Author(s):
ZHOU Junwen KONG Ying Persevearance Marecha
(School of Information and Electronic Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China)
关键词:
k-赢者通吃 竞争方式 最优化 收敛 多智能体系统
分类号:
TP13
DOI:
10.3969/j.issn.1671-8798.2024.01.005
文献标志码:
A
摘要:
【目的】为解决通信受限的智能体网络中的任务分配问题,提出了一种基于二次规划的通用分布式k-WTA(k-winners-take-all,k -赢者通吃)算法,本算法不需要中心命令来识别k个赢家。【方法】首先,结合高通一致性滤波器在现有集中式模型的基础上构造出一种新的分布式k-WTA模型; 然后,利用拉塞尔不变性原理(Lasalle's invariance principle)计算出本模型在不变集上等价于现有集中式模型,在理论上证明了其全局渐进收敛到k-WTA问题的解; 最后进行仿真试验以验证其有效性。【结果】本模型具有全局渐进收敛和智能等优势。此外,通过静态输入和动态输入的两个数值算例验证了本模型在分布式网络中搜索赢家的有效性。【结论】本研究提出的k-WTA模型能有效地解决通信受限的智能体网络中的竞争问题,可以为多机器人分布式任务分配工程应用提供参考。

参考文献/References:

[1] CHERRYK M, QIAN L L.Scaling up molecular pattern recognition with DNA-based winner-take-all neural networks[J]. Nature, 2018,559(7714):370.
[2] 吴倩,曹春杰.基于k-WTA的对抗样本防御模型研究[J].海南大学学报(自然科学版),2021,39(4):340.
[3] ZHANG Y H, XIANG S Y, GUO X X, et al. The winner-take-all mechanism for all-optical systems of pattern recognition and max-pooling operation[J]. Journal of Lightwave Technology,2020,38(18):5071.
[4] CHEN Z J, ZHANG J D, WEN S C, et al. Competitive neural network circuit based on winner-take-all mechanism and online hebbian learning rule[J]. IEEE Transactions on Very Large Scale Integration(VLSI)Systems,2021,29(6):1095.
[5] MAJANIE, ERLANSON R, ABU-MOSTAFA Y S. On the k-winners-take-all network[J]. Advances in Neural Information Processing Systems,1988,1:1.
[6] CALVERT B D, MARINOV C A. Another k-winners-take-all analog neural network[J]. IEEE Transactions on Neural Networks,2000,11(4):829.
[7] LIU S B, WANG J. A simplified dual neural network for quadratic programming with its KWTA application[J]. IEEE Transactions on Neural Networks,2006,17(6):1500,1502.
[8] HU X B, WANG J. An improved dual neural network for solving a class of quadratic programming problems and its k-winners-take-all application[J]. IEEE Transactions on Neural networks,2008,19(12):2022-2023.
[9] WANG J. Analysis and design of a k-winners-take-all model with a single state variable and the heaviside step activation function[J]. IEEE Transactions on Neural Networks,2010,21(9):1496,1498.
[10] LIU Q, DANG C, CAO J. A novel recurrent neural network with one neuron and finite-time convergence for k-winners-take-all operation[J]. IEEE Transactions on Neural Networks,2010,21(7):1140-1141.
[11] PENG B, JIN L, SHANG M. Multi-robot competitive tracking based on k-WTA neural network with one single neuron[J]. Neurocomputing,2021,460:1.
[12] QI Y M, JIN L, LUO X, et al. Robust k-WTA network generation, analysis, and applications to multiagent coordination[J]. IEEE Transactions on Cybernetics,2022,52(8):8515.
[13] LIU M, ZHANG X Y, SHANG M S, et al. Gradient-based differential k-WTA network with application to competitive coordination of multiple robots[J]. IEEE/CAA Journal of Automatica Sinica,2022,9(8):1452.
[14] LI S, ZHOU M C, LUO X, et al. Distributed winner-take-all in dynamic networks[J]. IEEE Transactions on Automatic Control,2016,62(2):577
[15] JIN L, LI S. Distributed task allocation of multiple robots:a control perspective[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems,2016,48(5):693.
[16] JIN L, LI S, LA H M, et al. Dynamic task allocation in multi-robot coordination for moving target tracking:a distributed approach[J]. Automatica,2019,100(7):75.
[17] HESPANHA J P. Uniform stability of switched linear systems:extensions of LaSalle's invariance principle[J]. IEEE Transactions on Automatic Control,2004,49(4):470.
[18] JADBABAIE A, LIN J, MORSEA S. Coordination of groups of mobile autonomous agents using nearest neighbor rules[J]. IEEE Transactions on Automatic Control,2003,48(6):988.
[19] ZHANG Y Y, LI S, WENG J. Distributed estimation of algebraic connectivity[J]. IEEE Transactions on Cybernetics,2022,52(5):3047.
[20] 高畅,孔颖,胡汤珑.基于有限时间神经网络求解的时变复数矩阵方程[J].浙江科技学院学报,2022,34(5):409.

备注/Memo

备注/Memo:
收稿日期:2023-02-13
基金项目:浙江省自然科学基金项目(LZY22E050002)
通信作者:孔 颖(1980— ),女,浙江省杭州人,教授,博士,主要从事神经网络与机械臂轨迹规划研究。E-mail:kongying-888@163.com。
更新日期/Last Update: 2024-02-29