[1]王杰,索艳格,张治国,等.基于热电制冷的空气制水器的试验研究[J].浙江科技大学学报,2024,(03):185-194217.[doi:10.3969/j.issn.1671-8798.2024.03.001 ]
 WANG Jie,SUO Yan'ge,ZHANG Zhiguo,et al.Experimental study on air water generator based on thermoelectric cooler[J].,2024,(03):185-194217.[doi:10.3969/j.issn.1671-8798.2024.03.001 ]
点击复制

基于热电制冷的空气制水器的试验研究(/HTML)
分享到:

《浙江科技大学学报》[ISSN:2097-5236/CN:33-1431/Z]

卷:
期数:
2024年03期
页码:
185-194217
栏目:
出版日期:
2024-06-30

文章信息/Info

Title:
Experimental study on air water generator based on thermoelectric cooler
文章编号:
1671-8798(2024)03-0185-10
作者:
王杰索艳格张治国楼汉青
(浙江科技大学 机械与能源工程学院,杭州 310023)
Author(s):
WANG Jie SUO Yan'ge ZHANG Zhiguo LOU Hanqing
(School of Mechanical and Energy Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China)
关键词:
空气制水 热电制冷器 比能耗 能效比
分类号:
TB657.8
DOI:
10.3969/j.issn.1671-8798.2024.03.001
文献标志码:
A
摘要:
【目的】为了解决从空气中取水的高能耗和低效率问题,设计了一种利用热电制冷器(thermoelectric cooler, TEC)进行空气制水的装置。【方法】首先结合空气冷凝制水原理,利用TEC将散热翅片表面温度降低至露点温度以下; 然后使装置与空气进行热量交换,从而实现空气中水蒸气的冷凝; 最后考察了在不同输入电压和散热翅片面积下TEC的热力学参数对系统的能效比(coefficient of performance,COP)及比能耗的影响。【结果】当输入电压为4 V、热端循环冷却水流速为0.3 L/min、散热翅片面积为20 320 mm2时,空气制水器比能耗最低,为2 135.27 kW·h/m3,系统的最佳COP为2.7。相对于现有研究,本试验通过对空气制水装置输入电压和散热翅片面积等参数的优化,将从空气中制水的能耗有效降低了13.8%。【结论】本研究结果为降低空气制水过程中的高能耗和提高空气制水过程中的系统效率提供了一定的技术支持。

参考文献/References:

[1] ISLAM M S, OKI T, KANAE S. A grid-based assessment of global water scarcity including virtual water trading[J]. Water Resources Management, 2007, 21:19.
[2] ASKARI M, DEHGHANI M. A novel stochastic thermo-solar model for water demand supply using point estimate method[J]. IET Renewable Power Generation, 2022, 16(16):3559.
[3] ELTAWEEL M, HEGGY A H. Application of the ANOVA method in the optimization of a thermoelectric cooler-based dehumidification system[J]. Energy Reports, 2022, 8:10533.
[4] ESFE M H, ESFANDEH S, TOGHRAIE D. Numerical simulation of water production from humid air for Khuzestan province:investigation of the Peltier effect(thermoelectric cooling system)on water production rate[J]. Case Studies in Thermal Engineering, 2021, 28:101473.
[5] GARG K, DAS S K, TYAGI H. Thermal design of a humidification-dehumidification desalination cycle consisting of packed-bed humidifier and finned-tube dehumidifier[J]. International Journal of Heat and Mass Transfer, 2022, 183:122153.
[6] JARIMI H, POWELL R, RIFFAT S. Review of sustainable methods for atmospheric water harvesting[J]. International Journal of Low-Carbon Technologies, 2020, 15(2):253.
[7] JANI D B, MISHRA M, SAHOO P K. A critical review on application of solar energy as renewable regeneration heat source in solid desiccant-vapor compression hybrid cooling system[J]. Journal of Building Engineering, 2018, 18:107.
[8] GUAN B, LIU X, ZHANG T. Modification of analytical solutions of coupled heat and mass transfer processes in liquid desiccant dehumidifier for deep dehumidification[J]. International Journal of Heat and Mass Transfer, 2021, 165:120728.
[9] AL-MADHHACHI H, MIN G. Effective use of thermal energy at both hot and cold side of thermoelectric module for developing efficient thermoelectric water distillation system[J]. Energy Conversion and Management, 2017, 133:14.
[10] ATTA R M. Solar water condensation using thermoelectric coolers[J]. International Journal of Water Resources and Arid Environments, 2011, 1(2):142.
[11] WEN T, LU L, LUO Y. Review on the fundamentals and investigations of falling film dehumidification/absorption refrigeration based on CFD technology[J]. International Journal of Heat and Mass Transfer, 2021, 171:121042.
[12] AL-MADHHACHI H, MIN G. Key factors affecting the water production in a thermoelectric distillation system[J]. Energy Conversion and Management, 2018, 165:459.
[13] VIÁN J G, ASTRAIN D, DOMINGUEZ M. Numerical modelling and a design of a thermoelectric dehumidifier[J]. Applied Thermal Engineering, 2002, 22(4):407.
[14] JOSHI V P, JOSHI V S, KOTHARI H A. Experimental investigations on a portable fresh water generator using a thermoelectric cooler[J]. Energy Procedia, 2017, 109:161.
[15] BORTOLINI M, GAMBERI M, GRAZIANI A. Refrigeration system optimization for drinking water production through atmospheric air dehumidification[M]// Progress in Clean Energy, Volume 1:Analysis and Modeling.Switzerland:Springer International,2015:259.
[16] MILANI D, ABBAS A, VASSALLO A. Evaluation of using thermoelectric coolers in a dehumidification system to generate freshwater from ambient air[J]. Chemical Engineering Science, 2011, 66(12):2491.
[17] TAN F, FOK S. Experimental testing and evaluation of parameters on the extraction of water from air using thermoelectric coolers[J]. Journal of Testing and Evaluation, 2012, 41(1):96.
[18] LIU S, HE W, HU D. Experimental analysis of a portable atmospheric water generator by thermoelectric cooling method[J]. Energy Procedia, 2017, 142:1609.
[19] ESLAMI M, TAJEDDINI F, ETAATI N. Thermal analysis and optimization of a system for water harvesting from humid air using thermoelectric coolers[J]. Energy Conversion and Management, 2018, 174:417.
[20] 李艳萍,张建华.自动气象站数据处理中的露点温度计算方法探讨[J].广西质量监督导报,2009(10):2.
[21] 王恒,TCHEDJI F X,李博林,等.利用帕尔贴效应进行甲醇蒸馏的试验研究[J].浙江科技学院学报,2023,35(1):14.
[22] 蒋寒渔,方启,TCHEDJI F X,等.一种采用循环水作为冷却介质的热电蒸馏装置[J].浙江科技学院学报,2023,35(3):226.
[23] LIU Z, HU G, WANG J. Design and optimization of a cubic two-stage thermoelectric cooler for thermal performance enhancement[J]. Energy Conversion and Management, 2022, 271:116259.
[24] 张子俊,秦阳,樊晖,等.热管增效热电制水系统的优化[J].制冷技术,2022,42(3):50.
[25] 毛俊西,陈曦,熊守权,等.表面憎水处理及接触面积对空气凝水的影响[J].现代盐化工,2019,46(1):42.
[26] ZHANG Z, QIN Y, FAN H. Experimental investigation and optimization analysis on thermoelectric water generator integrated with heat pipe[J]. Applied Thermal Engineering,2023,219:119442.

备注/Memo

备注/Memo:
收稿日期:2023-09-21
基金项目:浙江省自然科学基金项目(LZ23E060001)
通信作者:张治国(1980— ),男,安徽省寿县人,教授,博士,主要从事能源与环境系统工程研究。E-mail:zhangzhiguo@zust.edu.cn。
更新日期/Last Update: 2024-06-28