[1]马婉晴,冯军,袁园.基于课程关联的高校学生成绩预测模型研究[J].浙江科技大学学报,2024,(03):205-217.[doi:10.3969/j.issn.1671-8798.2024.03.003 ]
 MA Wanqing,FENG Jun,YUAN Yuan.Study on performance prediction model of university students based on course association[J].,2024,(03):205-217.[doi:10.3969/j.issn.1671-8798.2024.03.003 ]
点击复制

基于课程关联的高校学生成绩预测模型研究(/HTML)
分享到:

《浙江科技大学学报》[ISSN:1671-8798/CN:33-1431/Z]

卷:
期数:
2024年03期
页码:
205-217
栏目:
出版日期:
2024-06-28

文章信息/Info

Title:
Study on performance prediction model of university students based on course association
文章编号:
1671-8798(2024)03-0205-13
作者:
马婉晴冯军袁园
(浙江科技学院 经济与管理学院,杭州 310023)
Author(s):
MA Wanqing FENG Jun YUAN Yuan
(School of Economics and Management, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China)
关键词:
成绩预测 课程关联 机器学习 预测模型
分类号:
TP312.8; G424.7
DOI:
10.3969/j.issn.1671-8798.2024.03.003
文献标志码:
A
摘要:
【目的】为监测学习状况、管理学生成绩和提高教学质量,提出一种基于课程关联的学生成绩预测模型(students performance prediction using course association,SPCA)。【方法】以学生综合数据库为基础,挖掘课程间的关联程度,利用大数据技术对高校学生成绩进行分析和预测。选取某校2018—2020级工业工程专业学生的29门课程成绩,首先利用自组织映射网络(self-organizing map,SOM)算法对课程进行聚类,分为数学计算、通识与专业基础、实践应用三类; 然后利用先验算法(apriori algorithm,Apriori)挖掘课程间的关联规则; 最后采用决策树算法,利用处于同一类并且在关联规则中的前置课程成绩,对后置课程成绩进行预测。【结果】预测模型最终精确率为90.2%,准确率为88.9%,是预测学生成绩的较为有效的模型。【结论】本预测模型能优化课程安排,并帮助学生规划学习计划,对提高教学质量和改进教学管理具有一定的参考意义。

参考文献/References:

[1] ROMERO C, VENTURA S. Educational data mining:a review of the state of the art[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C(Applications and Reviews),2010,40(6):601.
[2] 黎龙珍.基于决策树算法的在线学习成绩预测[J].信息技术与信息化,2021(1):130.
[3] 班文静,姜强,赵蔚.基于多算法融合的在线学习成绩精准预测研究[J].现代远距离教育,2022(3):37.
[4] ALSARIERA Y A, BAASHAR Y, ALKAWSI G, et al. Assessment and evaluation of different machine learning algorithms for predicting student performance[J]. Computational Intelligence and Neuroscience,2022,2022:1.
[5] SHAHIRI A M, HUSAIN W,RASHID N A. A review on predicting student's performance using data mining techniques[J]. Procedia Computer Science,2015,72:414.
[6] BINMAT U, BUNIYAMIN N, Arsad P M, et al. An overview of using academic analytics to predict and improve students' achievement:a proposed proactive intelligent intervention[C]// IEEE 5th Conference on Engineering Education.Selangor:IEEE,2013:126.
[7] 兰嘉枫.基于一卡通数据的大一新生成绩预测预警[D].武汉:华中师范大学,2022.
[8] 孙美娟,张俊,年梅.基于校园一卡通和成绩数据的学生画像研究[J].计算机时代,2023(8):20.
[9] 刘晓云,刘鸿雁,李劲松.基于多元线性回归的学生成绩预测研究[J].计算机技术与发展,2022,32(3):203.
[10] 林婷婷.基于BP神经网络算法的成绩预测模型研究[J].计算技术与自动化,2022,41(1):79.
[11] NASER S A, ZAQOUT I, GHOSH M A, et al. Predicting student performance using artificial neural network:in the faculty of engineering and information technology[J]. International Journal of Hybrid Information Technology,2015,8(2):221.
[12] 柯红香.最小支持度挖掘算法在高校学生成绩关联规则的应用[J].长江工程职业技术学院学报,2023,40(2):69.
[13] 袁明.改进FP-Growth算法在考证成绩分析中的应用[J].信息技术与信息化,2021(6):53.
[14] CZIBULA G, MIHAI A, CRIVEI L M. SPRAR:a novel relational association rule mining classification model applied for academic performance prediction[J]. Procedia Computer Science,2019,159:20.
[15] 何楚,宋健,卓桐.基于频繁模式谱聚类的课程关联分类模型和学生成绩预测算法研究[J].计算机应用研究,2015,32(10):2930.
[16] 陈波.职业院校在线开放课程运行效果聚类分析[J].中国成人教育,2019(4):48.
[17] KOHONEN T. The self-organizing map[J]. Proceedings of the IEEE,1990,78(9):1464.
[18] DELGADO S, MORÁN F, SAN JOSÉ J C, et al. Analysis of students' behavior through user clustering in online learning settings, based on self organizing maps neural networks[J]. IEEE Access,2021,9:132592.
[19] JIMÉNEZ R, GERVILLA E, SESÉ A, et al. Dimensionality reduction in data mining using artificial neural networks[J]. Methodology Europtan Journal of Research Methods for the Behavioral and Social Sciences,2009,5(1):26.
[20] 赵翠翠,尹春华.K-means和SOM在商品评论中的情感词聚类对比[J].北京信息科技大学学报(自然科学版),2020,35(1):23.
[21] AGRAWAL R, SRIKANT R. Fast algorithms for mining association rules[C]//International Conference on Very Large Data Bases. San Francisco:VLDB,1994:487.
[22] MEHTA M, AGRAWAL R, RISSANEN J. SLIQ:a fast scalable classifier for data mining[C]//International Conference on Extending Database Technology. Avignon:Springer Berlin Heidelberg,1996:18.
[23] MAYILVAGANAN M, KALPANADEVI D. Comparison of classification techniques for predicting the cognitive skill of students in education environment[C]//2014 IEEE International Conference on Computational Intelligence and Computing Research. Coimbatore:IEEE,2014:1.

备注/Memo

备注/Memo:
收稿日期:2023-10-10
基金项目:辽宁省社会科学规划基金项目(L21CGL005); 浙江科技学院教学研究与改革重大项目(2022-jg06)
通信作者:冯 军(1963— ),男,浙江省海盐人,研究员,主要从事教育和教学管理的相关研究。E-mail:101006@zust.edu.cn。
更新日期/Last Update: 2024-06-28