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Periodic Positive Solution of a Predator-Prey System
with Stage-Structure for Prey and Time Delay
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Abstract: A Predator-Prey system with time delay is considered. There are, immature and

mature, two stage for prey species in the system. By using the continuation theorem of Gaines and

Mawhin’s coincidence degree theory, a sufficient condition is derived for the existence periodic

positive solution.

Key words: coincidence degree; Predator-Prey system; periodic positive solution; stage structure

CLC number: 0175.5 Document code: A Article ID: 1671-8798(2006)01-0001-07

— R AEEEME LSRR Predator-Prey 2 4t Ry J& B #%

&k AR, F AR
(A LRl B 2 Bt FEZFEBE, BLN 310023)

B E. B T — KAt # Predator-Prey B4t K Prey MERBA B MEMMBNFE, B4 F B BEM B F BB

Predator FhE% BB & Prey 414EFEE. @137 Gaines Ml Mawhin B4 HRHNEL RN EH . AHTRELER
BBEEN D &RE.

4247 . H 4 ;Predator-Prey R4 E A BRI BRG W
RIS 01755 X RkFRINED: A YEBE. 1671-8798(2006)01-0001-07

1 Introduction

The dynamics of population with delays is useful for the control of the population of mankind, animals
and environment. One of the famous models for dynamics of population is predator-prey system. There 1s

a large volume of literature relevant to the theory of the predator-prey system (-4 But the stage structure
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of species has been ignored in those articles. In this natural world, there are many species whose individual
members have a life history that take them through stage structure, immature and mature. In particular,
we have in mind mammalian populations and some amphibious animals, which exhibit these two stages.
For example, Chinese fire-bellied newt, which is unable to prey the nature rana chensinensis, can only
prey on the immature one. In recent years, permanence of predator-prey system with stage structure was
discussed. Cui and Song proved a sufficient and necessary condition to guarantee the permanence of a predator-
prey system with stage structure’™. The effect of delay on the population at positive equilibrium and the optimal
harvesting of the mature prey population were considered by Song and Chen'®, Global asymptotical stability of a
predator-prey system with stage structure for prey were studied by Zhang!".

Our purpose in this paper is, by using the continuation theorem which was proposed in'®’ ,to establish
the existence of at least one positive-periodic solution of a predator-prey models with stage structure and

delay
2= al)x, — b()x, — d(2) 2! — p(t)xl'{_ k() y(t + 5)ds

lx, = c(x, — fWxd (1)

5= 5[~ 8 +hDa —rDy—a®| ke (yCe+ 5ds]

where x; and x, denote the density of immature and mature population A respectively, and y is the density
of predator B that preys on x,. The coefficients in (1) are all w-periodic and continuous for :=>0, where

aCt), 6Ct), c(t), d(t), f(t), g(t), h(t) and r(¢) are positive, and p(t), g(t) are nonnegative. Here K,
. 0
(s)(i=1,2) defined on [ —r,0](r==0) are nonnegative and integrable satisfying | K,(s)ds=1(G=1,2) .

In what follow, we use the following notation.

7 = ij:f(ndt, = min | £ |,

w !G[Gmm_

" = max | f()

IE [ﬁrﬂl]
where f has a periodic continuous function with periodic &>0.

Main Theorem We assume the following:

S
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Then system (1) has at least one positive w-periodic solution.

2 Proof of the main theorem

Before stating the main result one first states some notations. Let X and Y be real Banach space, L
DomLC XY a Fredholm mapping of index zero and P: X—,Q:Y—Y continuous projections such that
ImP=Kerl, KerQ=1ImlL.

Introduction, for the sake of convenience, Mawhin's continuation theorem!’’ as follows.

Lemma 1l Let L a Fredholm mapping of index zero. Assume that N.2—>X is L-compact on { with {2
open bounded in X. Furthermore assumption.

a) for eacha € (0,1), x € 602 (| DomL, Lx # ANx;

b) for eachx € 002 N KerL, QNx £ 0;

c) deg (QNx, O ] KerL, 0y 0.

Then the operator equation Lx= Nx has at least one solution in .
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Consider the system

0
r;},l a(t)euz (D—u, () _ b(t) _ d(t)e"’l (£ P(t)j_ kl (S)eus(ﬂ's) dS;

) 1:52 — C(t)eul(:)—uz(:) — f(t)euz(t) : (2)

0
u, =— g(t) +h()e1®® —r(t)ew? — q(t)J.* k,(s)e“ ™ ds

\

It is easy to see that if system(2) is an w-periodic solution (u; (£), u,(2), u;3(¢)), then (et

. euz(r.) .

e?) is a positive w-periodic solution of system (1), Therefore, to have at least one positive w-periodic

solution for (1), it is sufficient that (2) has at least one w-periodic solution.

Denote _
= ((u () u (1) yus ())T € C(RRY) 1 (t +w) = u,; (1) ,i = 1,2,3)
and
| Gty (2) s () yus D)7 | = max | uy(2) |+ max | u, (¢) |+ max | u;(2) |

t€[(0),w] tc[0,0] t€[0,w)
with this norm. Thus X is a Banach space.

Let .
_ - 0 -
- a(t)euzft)—ul(t) — b(t) - d(t)eul(z) — p(t)J kl (s)eua(r-l-s) dS
1 . -t
Nlu, | = |c(t)en®@%® :5_-f(_:)eg2(':')
| . | ,
]| gD R — (e — g ky()en s
_ —r J
-_I_JN U (t) dt_
uy (t)° "?:h(t)“ Uy (U] @ _ul_‘
Llw,(®)|= lu (1) |s plu | = Qluy | = —c%jouz(t)dtl,where u, | € X.
ug(t) ug(t) U3 Uy 1 w _—Hgﬂ
L Y A
_w U —

We obtain KerL=R?, ImL is closed in X and L is a Fredholm mapping of index zero. By a simple computation we

find that the inverse K, of L has the torm

K,:ImL — KerP () DomL, and K,(z) = Lz(s)ds— %J:J’ﬂz(s)dsdt.
Therefore
__1_..[” -a(t)euzir.)—ul(z) — b(l‘,) — d(t)e“lm — p(t)J kl (s)eua(ﬁ-s} ds—dt_
Uy " wJo| ~t |
QN u | = __]:_J‘m [C(t)eul(r)ﬂ-uz(t} _ f(t)euz(:) ]dt :
wJo
Uy 1 w 0 -
T ——J — g(t) +h(t)e1® —r(t)es” — q(t)J k,(s)es' ™ ds |dt
WwJo —T i ~
_J‘t [a(z)euz(z)—ul(:) . b(z) _ d(z)eulfz) _ P(z)j kl (S)EHE(H-:) dS]dz_
Uy 0 —r
KP(I _ Q)N u, | = J. [C(z)eul’{z)—-ulﬁz} — f(z)euztz) :ldz
U t _ 0
et J - g(Z) __I_h(z)eultz) . r(z)eua(z) — Q(Z)J.d kz(s)euatz—}-s) dS]dZ

J

Lo
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r‘}“J j [ﬁ(z) @D — p(2) — d(2)e"® — P@}J B (s)en ds]dzdt
el
— l‘;})‘”rL [cft}eﬁlm M — £()en® jdzdt
*'-er [ g(t) +h(t)eu® — r(t)eu'? — q(t)f by (5)e*: s ds]dzdt
h—{u QJ 0 -r
1 1.[ “ ]
(___é_ —_ M)J [a(z}eﬂziz}—uzfr} _b(z) _d(z)eﬂzit} —_ P(z)j kl(s)eua{ﬂ';) ds:ldt
() 0 —
+ ; (%_ o __2:_ J:’ [C(z)eﬁlm—nﬁm _ f(z)euz{t} ]dt
(4= D[ [ g2 +h@en® —r(zren® ~g(2) " ky (5)en ds J
() O -t

Thus QN and K,(I—Q)N are continuous. By using the Arzela-Ascoli theorem, one can see the QN(2)
and K,(I—Q)N(Q2) are relatively compact for any open bounded set QC X. Thus, we have that N is L-

compact on 3. Corresponding to system (2), we have
0
{“ . A[a(t)e“?f‘)““i{‘} —_— b(t) _‘d(t)&ﬂzii} — P(t)j él{s)&aﬁm} dS];

) u — Amc(t)eulﬁz}—-uzit) %f(t)ﬁuz.(tl]f

. | - 0
u=Al—g()+h)er?” —r(t)es® — q(r)J. ky(s)ets!ts ds:l

o

(3)

Assume that (u, (¢), u (8)y us(£))' € X is a solution of (3) some A€ (0,1). By integrating (3) over the

interval [ O, |,

W 0
j [a(t)e"a“)”“l“) —B(2) — d(B)em® — p(t)L b (5)en ds]dt =0,

MEC(I)euliﬂhug(z) _ f(t)euz(r) ]dt —_ O*

L

and

r’”-— g(2) +h(t)en® — r(t)en® —-q(z)f k, <s)eﬂa<*+ﬂdx} t =0,

0

From (4),(5),(68), we claim

j () | dzgzj (50 +d (e +p<z)j ke (s)en ds
J | u, () | dt <€ Lf(t)e“ﬂ‘”dt,
I

() | de < zj h(2)en® e,

Hence, there exist &€ [0,w] (i=1, 2, 3) such that
U; (5) - maxu(t)p = 192 3

ré&[0,0)
It follows that

]
() e @ — p(a) — d(& ) — p(g )f_ ki (s)en @t ds = 0,

C(Ez)eul(ez,‘lmuzisz) — f(Ez)euziaEz) — 0’

and
Q
g8 Fh(E) e E — r(8)en ) — g(&, )j_ B, (5)essE* ds = 0

which implies

(4)

(5)

(6)

(7)
(8)

(9)
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c(ez)e“l(sl)_“z(ez) ; f(ez)e“ztez) and a(&)e“z(fz)_"iffl’ ;d(&)e"l(ﬁ').

Then, we have

uy () f(&) 2u, (€,) (10)
© 2 C(Ez)e
and
d(§)
uy (§,) > Zuy (§) (11)
: - a(&)e
From (10),(11),we get
2. =7
e (8 1’(i)f[(_‘f_)f } = A, (12)
\ C a |
and
22\ "%
e J(-f‘f-)‘[O—f—)* } = A, (13)
\ a C -
Combining (6) with (11), we obtain
_ - | 2 _%
et < (Bymem@r <ﬁ->m{(i>f[<i>* } — A, (14)
r | r c a’ |

Choose n € [(Oyew]y, 1 = 1,2,3 such that )
u,'(‘f?,') — min u,-(t); Z= 152;3.

N 'IG-FDW][ .
Then -
C(m)eultqi)—-uthz) g f(?z)euziqz) a'nd a(ql)euz(qz)—ul(ql) g d(m)eul(ql}
That is
eul(ql) g (i)mEZHZ(qZ) and eﬂz(‘rh) g (i)meZnnl(ql)- (15)
C a
According to (15) it follows that
, 1
eu1(’?1) > {(Ci)m[(éd_)m:l } ; — Bl’ (16)
and
, _1
e > (f—)[({)m] } ' = B,. (17)

By the condition (H) in the Main Theorem, we have
0
— g(p) +hp)en® — rip)es® — g(p) | ks ()en™™ds = 0.

Notice |
— g () +h(p)er™® —r(p)es™ —g(g)e'n <0
By (14), we have

_L
3

m - __}_1__,,, iz f_xz' _—
—{g +g" () [(a)ucn )}} B, (18)

1
3

g () _F ____.}:_m imz
e"s M ;f””h[(c) ((—=)™)

By (12),(13),(14), it follows that there exist three constants d,, d; and d; such that

w o 0 _ _ _ def
j |, (2) | de << 2 [b(z) 4+ d(t)en +p<z>j k1<s>e~swds]dz< 2w(b +dA, + pA;) = d,
0 0 _ -— | |

o

d

" _ ef
f(te2"dt << 2wfA, = d;
0 -

j‘" |, (2) | de << 2

v

def

r" i () | de < ijh(t)e"l‘” dt < 2uhA, = d,.

From this, it follows that there exist three positive constantsp, » p, and p; such that
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u, (t) ;_Pl y Uz (2a) ?f'_pz , and u3 (¢;3) ---<..~_p3 (19)
For all t € [0, ], we have

!

0 () = w (8)) —j i () dsy u(2) = u, (2,) —J;r:tg(s)ds,

1
and 4y (8) = s (1) = [ iy () ds
which imply

u; (t) >—p; —I: | w (s) | ds >—p, —d.(i = 1,2,3).
Then

def

‘ u,;(t) Ig maX{lnA,' y Oi +dl }= R,(Z —— 1!2 g3) '
here R;(i = 1,2,3) are independent of A.
Denote M = R, +R; + R; + R,. Here R, is taken sufficiently large such that each solution (a, 8, )

of the following system:

.<Cerﬁ""feﬁ_ - (20)
— g+ he® — (r*_—l— gle’ =0
satisfies | (a B ?) | =lal + |8 + | 7| <M, pro#ided, that system (20) has at least one solution. Now

we take | .
ﬂ={(u1 (t), u, (t), w ()T GX:“(}’I ' Vo !ya)TII<M}.
This satisfies condition (a) of Lemma 1. So (y,,y:,v:)T€3 Q2 NKerL=0 02N R?, and (y,,y;,y;)7 is a

constant vector in R® with|y, |+ |y, |+ |y;| =M. If system (20) has a solution or a number of solutions,

then
2 de’r ™ — b — de” — pe’s - O
QN |y, | = et~ — Feo (== |o
Vi —F+hen — (| Pe 19}
[f system (2) does not have a solution, then naturally
A
QN |y |# |0
Vs 0

h,

holds. This proves that the condition (b) of Lemma 1 holds.
Finally we will prove that condition (c) of Lemma 1 holds. To this end, we define $:DomL X[0,1]—>X by

r a“e’f’:”l —b — de” — pe’s -
@(3’1 'y V2 2 V3 1#) = Cel2 2 _78‘?2 + A 0
—z+hen —Gper] | 0

where 4 € {0,1], here (y1,5:,,v)T€3 QNKerL=8 QUR®,(3 ,y2,v:)7T is a constant vector in R® with |
il T |yl +|y;] =M. Next,we can show that when (y;,7y;, v, ) TeanUKerL. oy sy 32 yu) 70, if the
conclusion is not true, constant vector (y, ,y,,y3:)" with |y, | +v. | + | y; | =M satisfying (V1 s Y21 Y2 s ) F
0, then from

ae™ —p—den — pe’ = ()

Jcen ™ — fen = ()

—g+he —(r+ges =0
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following the argument of (15),(16),(17) and (22) gives
|.‘}’£ |<max{|lnAi |!P:‘} (1=l!293).
Thus

vy |+ 2 |4 ys | <max{]| In A, |,p;} + max{| In A, | y0:} +max{ln A; |,0,} < M,
which contradicts the fact that |y, |+ |y. | + | s | =M. Furthermore, taking J=1 ' ImQ—>KerL, (y,,y:,

ya)T*""(yl » VYo 1y3)T w¢E have

deg(fQN(yl ' Y2 !ys)T y {2 n KerL, (O,O,O)T) — deg(¢(_’y1 y V2 s V3 ,0),0 n KEI’L,(O,O,O)T)
= deg{[a@e”™ —b,cen ™ = fen,—g+her]T,0 ) Kerl,(0,0,0)"} =—1.
This verifies condition (¢) of Lemma 1. By now we know that () satisfies all the requirement of Lemma 1

thus system (2) has at least one w-periodic solution. This completes the proof.
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